METHODICAL APPROACH TO THE ASSESSMENT OF INFORMATIONAL CONTENT OF TECHNICAL CHANNELS OF LEAKAGE OF DATA ON THE PROTECTED OBJECT

Author(s):  
Александр Иванович Байбаков

В статье рассматриваются вопросы организации защиты от технических разведок конкретных сведений об объекте. Вводится понятие технического канала утечки сведения. Предлагается методический подход к оценке информативности технических каналов утечки сведений о защищаемом объекте с использованием методов нечеткой логики. In article questions of the organization of protection against technical reconnaissances of specific data on object are considered. The concept of the technical channel of leakage of data is entered. Methodical approach to an assessment of informational content of technical channels of leakage of data on the protected object with use of methods of a fuzzy logic is offered.

Author(s):  
Claudio De Capua ◽  
Rosario Morello ◽  
Rosario Carbone

In this paper, the authors examine a common issue concerning the influence of measurement uncertainty on decisions. In fact, in some practical applications, it can be necessary to put in comparison measurement data with thresholds and limits. It occurs when the conformity with fixed specifications has to be verified or if warning and alert levels have to be not exceeded. In such a circumstance, to take reliable decisions in presence of uncertainty is a concrete problem. Measurement uncertainty may reasonably be the cause of unreliable decisions. In order to manage properly the uncertainty effect, the authors have developed a decision making procedure based on a methodical approach to measurement uncertainty. In detail, a fuzzy logic algorithm estimates the probability to take a wrong decision because of the uncertainty. Such information is so used in order to optimize the decisional criteria, improving the consistency of the final computing results. Risks and costs associated to the possibility to take a mistaken decision are minimized. Consequently the algorithm singles out the most reliable decision.


Author(s):  
Claudio De Capua ◽  
Rosario Morello ◽  
Rosario Carbone

In this paper, the authors examine a common issue concerning the influence of measurement uncertainty on decisions. In fact, in some practical applications, it can be necessary to put in comparison measurement data with thresholds and limits. It occurs when the conformity with fixed specifications has to be verified or if warning and alert levels have to be not exceeded. In such a circumstance, to take reliable decisions in presence of uncertainty is a concrete problem. Measurement uncertainty may reasonably be the cause of unreliable decisions. In order to manage properly the uncertainty effect, the authors have developed a decision making procedure based on a methodical approach to measurement uncertainty. In detail, a fuzzy logic algorithm estimates the probability to take a wrong decision because of the uncertainty. Such information is so used in order to optimize the decisional criteria, improving the consistency of the final computing results. Risks and costs associated to the possibility to take a mistaken decision are minimized. Consequently the algorithm singles out the most reliable decision.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


2012 ◽  
Author(s):  
Thomas M. Crawford ◽  
Justin Fine ◽  
Donald Homa
Keyword(s):  

2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
M Kaur ◽  
N Sprunk ◽  
U Schreiber ◽  
R Lange ◽  
J Weipert ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 368-371
Author(s):  
R. Soma ◽  
Y. Yamamoto

Abstract.A new method was developed for continuous isotopic estimation of human whole body CO2 rate of appearance (Ra) during non-steady state exercise. The technique consisted of a breath-by-breath measurement of 13CO2 enrichment (E) and a real-time fuzzy logic feedback system which controlled NaH13CO3 infusion rate to achieve an isotopic steady state. Ra was estimated from the isotope infusion rate and body 13CO2 enrichment which was equal to E at the isotopic steady state. During a non-steady state incremental cycle exercise (5 w/min or 10 w/min), NaH13CO3 infusion rate was successfully increased by the action of feedback controller so as to keep E constant.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Sign in / Sign up

Export Citation Format

Share Document