Hochpräzises Bearbeiten von Schiffspropellern*/High-precision machining of very large ship propellers

2017 ◽  
Vol 107 (03) ◽  
pp. 182-188
Author(s):  
S. Dryba ◽  
J. Meißner ◽  
M.-C. Prof. Wanner ◽  
O. Wurst

In der industriellen Fertigung sind Industrieroboter weit verbreitet [1]. Durch ihre Flexibilität und Schnittstellenvielfalt sind sie für den Ansatz Industrie 4.0 von immenser Bedeutung. Einige Bereiche der Industrie, beispielsweise Gießereien, sind bisher von dieser Entwicklung ausgeschlossen. Viele Werkstücke, die hier zu handhaben oder bearbeiten sind, überschreiten die Arbeitsräume und Lastmomente verfügbarer Industrierobotersysteme. Der Fachbeitrag beschreibt die Entwicklung eines Schwerlast-Großrobotersystems sowie dessen Applikation in einer Gießerei für große Werkstücke.   The use of industrial robots is prevalent in today’s industry [1]. Due to flexible applications and a large variety of interface options, they play a vital role in implementing “Industry 4.0”. As industrial robots offering sufficiently large work spaces and handling heavy payloads are not available today, specific industrial areas, such as foundries, have been mostly excluded from this progress. This paper describes the development of a new heavy-duty industrial robot system, as well as its application in a foundry for large workpieces.

2021 ◽  
Vol 5 (6) ◽  
pp. 19-24
Author(s):  
Xiguang Zhang

Since 2013, China has been the world’s largest market for industrial robots. Despite the gradual maturity of the industrial robot system, the lagging R&D and backward technology level of industrial robots have led to a strong dependence on the import of core components and key technologies, which to a certain extent has restricted the development and improvement of industrial robots. At present, the “neck problem” in the field of industrial robots in China is not only in the reducer, controller, and servo but also in the basic processing equipment, basic technology, and basic materials. In this paper, we propose measures to improve the “neck problem” of industrial robots to promote the high-quality development of industrial robots in China.


Author(s):  
Miao He ◽  
Xiaomin Wu ◽  
Guifang Shao ◽  
Yuhua Wen ◽  
Tundong Liu

Abstract Industrial robots have received enormous attention due to their widespread uses in modern manufacturing. However, due to the frictional discontinuous and other unknown dynamics in robotic system, existing researches are limited to simulation and single- or double-joint robot. In this paper, we introduce a semiparametric controller combined by a radial basis function neural network (RBFNN) and complete physical model considering joint friction. First, to extend the NN controller to real-world problems, the continuously differentiable friction (CDF) model is adopted to bring physical information into the learning process. Then, RBFNN is employed to approximate the model error and other unmolded dynamics, and the parameters of CDF model are updated online according to its learning ability. The stability of the robot system can be guaranteed by the Lyapunov theory. The primary parameters of CDF model are determined by the identification experiment and subsequently iteratively updated by the NN. Real-time tracking tasks are performed on a six degree of freedom (DoF) manipulator to follow the desired trajectory. Experimental results demonstrate the effectiveness and superiority of the proposed controller, especially at low speed.


2013 ◽  
Vol 774-776 ◽  
pp. 1409-1413
Author(s):  
Bei Yu Chen

In recent years, China's increasing demand for precision machining and auxiliary processing, technological innovation is increasingly urgent. After a summary and integration advantages of virtual prototyping and computer-aided software, developed a General Purpose low-load industrial robots. In this paper, the D-H method in MATLAB to establish a three-dimensional diagram of the industrial robot. Using ANSYS to do a check of the stiffness of the important components of the industrial robot mechanical systems. Finally, after the structure static analysis and verification, to improve the design of the structural components of the robot. Obtained according to the repeatedly comparison of the overall shape of variable verification data, which prove that the design is correct.


2005 ◽  
Vol 127 (08) ◽  
pp. 25-27
Author(s):  
Gayle Ehrenman

This article discusses vision-enabled robots that are helping factories to keep the production lines rolling, even when the parts are out of place. The automotive industry was one of the earliest to adopt industrial robots, and continues to be one of its biggest users, but now industrial robots are turning up in more unusual factory settings, including pharmaceutical production and packaging, consumer electronics assembly, machine tooling, and food packaging. No current market research is available that breaks down vision-enabled versus blind robot usage. However, all the major industrial robot manufacturers are turning out models that are vision-enabled; one manufacturer said that its entire current line of robots are vision enabled. All it takes to change over the robot system is some fairly basic tooling changes to the robot's end-effector, and some programming changes in the software. The combination of speed, relatively low cost , flexibility, and ease of use that vision-enabled robots offer is making an increasing number of factories consider putting another set of eyes on their lines.


2011 ◽  
Vol 130-134 ◽  
pp. 249-255
Author(s):  
Liang Zhao ◽  
Meng Su ◽  
Yun Chen Miao

Error sources which influence the end-executor’s accuracy are summarized. Based on an analysis of influence caused by the structural error and transmission error, we build a pose error model of industrial robots with screw theory. If regarding the inertia force of the robot system as the external force, the robot system will become a static system. The rigidity can be analyzed using the screw theory, then we establish the dynamic error modle which is caused by the inertia force and gravity. After the error parameters which influence the static error of Selective Compliance Assembly Robot Arm (SCARA) robot are expressed by two-dimensional discrete variable, error space of the end-executor’s track of robot are made. Position error which influenced by the error sources are analysed by comparision of difference. Total accuracy can be improved through controlling the error direction of the static error to counteract the dynamic error's influence. The error model provides an effective theoretical support for the design of industrial robots with different accuracy requirements.


Author(s):  
Marek Vagas

Urgency of the research. Automated workplaces are growing up in present, especially with implementation of industrial robots with feasibility of various dispositions, where safety and risk assessment is considered as most important issues. Target setting. The protection of workers must be at the first place, therefore safety and risk assessment at automated workplaces is most important problematic, which had presented in this article Actual scientific researches and issues analysis. Actual research is much more focused at standard workplaces without industrial robots. So, missing of information from the field of automated workplaces in connection with various dispositions can be considered as added value of article. Uninvestigated parts of general matters defining. Despite to lot of general safety instructions in this area, still is missed clear view only at automated workplace with industrial robots. The research objective. The aim of article is to provide general instructions directly from the field of automated workplaces The statement of basic materials. For success realization of automated workplace is good to have a helping hand and orientation requirements needed for risk assessment at the workplace. Conclusions. The results published in this article increase the awareness and information of such automated workplaces, together with industrial robots. In addition, presented general steps and requirements helps persons for better realization of these types of workplaces, where major role takes an industrial robot. Our proposed solution can be considered as relevant base for risk assessment such workplaces with safety fences or light barriers.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


2021 ◽  
Vol 1939 (1) ◽  
pp. 012027
Author(s):  
Jingsen Jin ◽  
Weidong Hao ◽  
Daoguo Yang ◽  
Zhaoquan Tan ◽  
Chuan Zheng

2021 ◽  
Vol 11 (3) ◽  
pp. 1287
Author(s):  
Tianyan Chen ◽  
Jinsong Lin ◽  
Deyu Wu ◽  
Haibin Wu

Based on the current situation of high precision and comparatively low APA (absolute positioning accuracy) in industrial robots, a calibration method to enhance the APA of industrial robots is proposed. In view of the "hidden" characteristics of the RBCS (robot base coordinate system) and the FCS (flange coordinate system) in the measurement process, a comparatively general measurement and calibration method of the RBCS and the FCS is proposed, and the source of the robot terminal position error is classified into three aspects: positioning error of industrial RBCS, kinematics parameter error of manipulator, and positioning error of industrial robot end FCS. The robot position error model is established, and the relation equation of the robot end position error and the industrial robot model parameter error is deduced. By solving the equation, the parameter error identification and the supplementary results are obtained, and the method of compensating the error by using the robot joint angle is realized. The Leica laser tracker is used to verify the calibration method on ABB IRB120 industrial robot. The experimental results show that the calibration method can effectively enhance the APA of the robot.


Sign in / Sign up

Export Citation Format

Share Document