Hochdynamisches Festwalzwerkzeug/New approaches to an innovative surface treatment of functional components – Highly dynamic deep rolling tool

2021 ◽  
Vol 111 (11-12) ◽  
pp. 851-856
Author(s):  
Vannila Prasanthan ◽  
Berend Denkena ◽  
Bernd Breidenstein ◽  
Alexander Krödel-Worbes ◽  
Oliver Maiß

Das Festwalzen ist ein etabliertes Verfahren, um gezielt Druckeigenspannungen in der Bauteilrandzone einzustellen. Aktuell existieren keine Werkzeuge, die lokal hochaufgelöst unterschiedliche Eigenspannungen erzeugen. Mit der Entwicklung eines hochdynamischen Festwalzwerkzeugs lassen sich lokal unterschiedliche Eigenspannungszustände belastungsangepasst einstellen. Die hierfür notwendigen Anforderungen werden mittels Analogieuntersuchungen identifiziert. Darauf basierend wird ein Konzept für das Werkzeug erstellt und konstruktiv umgesetzt.   Deep rolling is a well-established process to induce compressive residual stresses into the subsurface of a component. Currently, there are no rolling tools that generate different residual stresses with high local resolution. With the development of a highly dynamic deep rolling tool, locally varying residual stress states can be adjusted to the load. The necessary requirements for this are identified by means of analogy studies. Based on this, a concept for the tool is developed and implemented constructively.

2016 ◽  
Vol 853 ◽  
pp. 173-177 ◽  
Author(s):  
Miao Dong Mao ◽  
Xian Cheng Zhang

Compressive residual stresses have been found to affect fatigue crack growth behavior by delaying the crack initiation and by decelerating the crack propagation rate. Therefore, various mechanical surface treatment techniques have been developed to produce the compressive residual stresses on the surface of components. However, the residual stresses will relax due to cyclic loading. Hence, the stability of residual stress during fatigue process is a great importance aspect for design of components. In this paper, the ultrasonic surface deep rolling was used to generate the compressive residual stress near the surface of Ti-6Al-4V. The stress relaxation behavior was identified during the low cycle fatigue process. The X-ray diffraction method was used to determine the magnitude and sign of residual stress. Results showed that under cyclic loading, the residual stress relaxation occurred fast in the first few cycles then became stable. Furthermore, it was found that relaxation rates of residual stress were depended on the applied stress.


2019 ◽  
Vol 3 (3) ◽  
pp. 56 ◽  
Author(s):  
Nataliya Lyubenova ◽  
Dirk Bähre ◽  
Lukas Krupp ◽  
Julie Fouquet ◽  
Titouan Cronier ◽  
...  

Mechanical surface treatments, e.g., deep rolling, are widely spread finishing processes due to their ability to enhance the fatigue strength of the treated materials with means of cold working and inducement of favorable compressive residual stresses. Despite of the clear advantages of deep rolling, the controlled generation of compressive residual stresses is still a challenging task, as the process can be influenced by the pre-machining stress state of the treated material. Additionally, the exact characterization of the induced residual stress field is impacted by the specific characteristics of the applied measurement technique. Therefore, this paper is focused on the X-ray diffraction residual stress analysis of deep rolled specimens, pre-machined to achieve rough or polished surface. The deep rolling process was realized as a single-trace to avoid the influence of the other process parameters and the resulted residual stress field on the surface and in depth was investigated. Additionally, the surface residual stress profiles were determined using two different measuring devices to analyze the impact of the different measurement conditions.


2006 ◽  
Vol 524-525 ◽  
pp. 51-56
Author(s):  
Jens Merkel ◽  
Volker Schulze ◽  
Alexander Wanner ◽  
Otmar Vöhringer

In the work presented here the residual stress states of sintered iron (ASC 100.29) were studied after mechanical surface treatments. This included the investigation of the stability of compressive residual stresses of deep rolled sintered iron at different angles relative to the rolling direction at quasistatic and cyclic bending loading. An increase of the compressive residual stress in the transversal deep rolling direction at fatigue loading was found and will be discussed in this presentation.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Robert Zmich ◽  
Daniel Meyer

Knowledge of the relationships between thermomechanical process loads and the resulting modifications in the surface layer enables targeted adjustments of the required surface integrity independent of the manufacturing process. In various processes with thermomechanical impact, thermal and mechanical loads act simultaneously and affect each other. Thus, the effects on the modifications are interdependent. To gain a better understanding of the interactions of the two loads, it is necessary to vary thermal and mechanical loads independently. A new process of laser-combined deep rolling can fulfil exactly this requirement. The presented findings demonstrate that thermal loads can support the generation of residual compressive stresses to a certain extent. If the thermal loads are increased further, this has a negative effect on the surface layer and the residual stresses are shifted in the direction of tension. The results show the optimum range of thermal loads to further increase the compressive residual stresses in the surface layer and allow to gain a better understanding of the interactions between thermal and mechanical loads.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2006 ◽  
Vol 524-525 ◽  
pp. 45-50 ◽  
Author(s):  
H. Michaud ◽  
Jean Michel Sprauel ◽  
F. Galzy

In this work, the effect of steel grade on the fatigue resistance of deep-rolled crankshafts is analysed. In the first part of this paper, the mechanisms leading to the increase of the fatigue resistance brought by the deep rolling treatment, is presented. This reinforcement is mainly linked to crack arrest due both to a decrease of the in-depth stress concentration factor and to remaining compressive residual stresses induced by the deep rolling. In a second part, an analytical model of residual stresses generation by deep-rolling and fatigue is presented. In this model the low cyclic fatigue behaviour of the steel is taken into account, and the residual stress stability with bending fatigue cycling can be predicted. After a presentation of the experimental validation on two different microstructures (baintic and ferrito- perlitic), this model is used for analysing the main parameters of the deep-rolling process and fatigue resistance.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2013 ◽  
Vol 768-769 ◽  
pp. 613-619
Author(s):  
Majid Farajian ◽  
Zuheir Barsoum ◽  
Arne Kromm

The developments in the field of residual stress determination during the last decades have contributed to a better understanding of the origins and sources of residual stresses in different engineering disciplines. The many investigations concerning the behavior of residual stresses under mechanical loading have also provided a solid foundation to clarify the important aspects of residual stresses and fatigue. The question that arises now is if this available body of knowledge is being used effectively in the field of welding technology to design and construct structures with better fatigue performances. In this paper the necessity of the development of the concept residual stress engineering for welds in which wanted residual stress states are tailored for specific cases by appropriate means will be discussed. The possibilities of the quantitative consideration of the benefits in the fatigue design codes will be presented in a practical example.


Sign in / Sign up

Export Citation Format

Share Document