scholarly journals Thermal Behavior Assessment of Natural Stone Buildings in the Semi-Arid Climate

Author(s):  
Racha Djedouani ◽  
Lazhar Gherzouli ◽  
Hakan Elçi

This paper aims to assess the effects of harsh climatic conditions’ interactions with natural stone on thermal inertia properties and the thermal performance of ancient residential buildings. As the type of stone differs, its thermo-physical components differ; therefore, its interactions with environmental factors vary. For this purpose, an experimental measurement was conducted on many buildings with different orientations in a semi-arid climate and validated by a simulation performed by the “EnergyPlus 9.3” software. Results showed that the important outdoor temperature gap between day and night influences the natural stone thermos-physical properties used in construction. The stone components affected by the thermal shock effect weathering are eroded over time, then saturated with water, and affect the thermal conductivity coefficient of stone; however, this directly changes the indoor thermal comfort and performance of buildings. Additionally, the high indoor relative humidity percentage and the absence of natural ventilation have an important influence on the ambient temperature values recorded. This paper discusses the experimental measurement results compared to the simulation results. KEYWORDS Thermal performance, building envelope, thermal inertia, limestone, Tébessa, Algeria

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6025 ◽  
Author(s):  
Erik Schmerse ◽  
Charles A. Ikutegbe ◽  
Amar Auckaili ◽  
Mohammed M. Farid

A characteristic feature of lightweight constructions is their low thermal mass which causes high internal temperature fluctuations that require high heating and cooling demand throughout the year. Phase change materials (PCMs) are effective in providing thermal inertia to low-thermal-mass buildings. This paper aims to analyse the thermal behaviour of two proposed lightweight buildings designed for homeless people and to investigate the potential benefit achievable through the use of different types of PCM in the temperate climatic conditions of Christchurch, New Zealand. For this purpose, over 300 numerical simulations were conducted using DesignBuilder® simulation software. The bulk of the simulations were carried out under the assumption that the whole opaque building envelope is equipped with PCM. The results showed significant energy saving and comfort enhancement through the application of PCMs. The integration of PCM in single-structure components led to substantial energy savings between 19% and 27% annually. However, occupant behaviour in terms of ventilation habits, occupancy of zones, etc. remains one of the biggest challenges in any simulation work due to insufficient data.


Author(s):  
Erik Schmerse ◽  
Charles Ikutegbe ◽  
Amar Auckaili ◽  
Mohammed Farid

A characteristic feature of lightweight constructions is their low thermal mass which causes high internal temperature fluctuations that require high heating and cooling demand throughout the year. Phase Change Materials (PCMs) is effective in providing thermal inertia to low thermal mass buildings. The aim of this paper is to analyse the thermal behaviour of two proposed lightweight buildings designed for homeless people and to investigate the potential benefit achievable through the use of different types of PCM in the temperate climatic conditions of Christchurch, New Zealand. For this purpose, over 300 numerical simulations have been conducted using the simulation software DesignBuilder®. The bulk of the simulations were carried out under the assumption that the whole opaque building envelope is equipped with PCM. The results showed significant energy saving and comfort enhancement through the application of PCMs. Thereby, annual energy saving of over 50 % was reached for some of the PCMs considered. Additionally, the effectiveness of single, PCM-equipped structure components was investigated and substantial benefits between 19 and 27 % annual energy saving were achieved. However, occupant behaviour in terms of ventilation habits, occupancy of zones etc. remains one of the biggest challenges in any simulation work due to insufficient data.


2020 ◽  
Vol 13 (1) ◽  
pp. 201
Author(s):  
Pau Chung Leng ◽  
Gabriel Hoh Teck Ling ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Eeydzah Aminudin ◽  
...  

The provision requirement of 10% openings of the total floor area stated in the Uniform Building By-Law 1984 Malaysia is essential for natural lighting and ventilation purposes. However, focusing on natural ventilation, the effectiveness of thermal performance in landed residential buildings has never been empirically measured and proven, as most of the research emphasized simulation modeling lacking sufficient empirical validation. Therefore, this paper drawing on field measurement investigates natural ventilation performance in terraced housing with an air-well system. The key concern as to what extent the current air-well system serving as a ventilator is effective to provide better thermal performance is to be addressed. By adopting an existing single-story air-welled terrace house, indoor environmental conditions and thermal performance were monitored and measured using HOBO U12 air temperature and humidity, the HOBO U12 anemometer, and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration. The results show that the air temperature of the air well ranged from 27.48 °C to 30.92 °C, with a mean relative humidity of 72.67% to 79.25%. The mean air temperature for a test room (single-sided ventilation room) ranged from 28.04 °C to 30.92 °C, with a relative humidity of 70.16% to 76.00%. These empirical findings are of importance, offering novel policy insights and suggestions. Since the minimum provision of 10% openings has been revealed to be less effective to provide desirable thermal performance and comfort, mandatory compliance with and the necessity of the bylaw requirement should be revisited.


Author(s):  
Daniele Fiaschi ◽  
Giampaolo Manfrida ◽  
Luigi Russo

The use of heavy fluids (typically refrigerants) for tests on turbomachinery equipment, like centrifugal compressors, under similitude with real working conditions is a common practice in the test facilities of manufacturers. This practice leads to the release of the test gas to the environment, mainly coming from seals, test circuit connections, valve gaskets and from operations of circuit assembling/disassembling necessary to replace or service the machine under test. The spatial distribution and flow of these emissions inside the test building is a complex issue, which depends on the specific circuit features, location of sources, geometry and openings of the building and variable climatic conditions of the location. For a preliminary assessment of the health and safety conditions, a NIST computational package — including a CFD solver — was applied. The aim was to validate the applicability and reliability of this tool, which was developed for other types of buildings; from the industrial side, knowledge of the diffusion scenario is important to define test protocols to guarantee acceptable emissions levels for manpower in working areas. The industrial building is organized in multiple inside workspaces. The concentration of the contaminant in the area of the test benches, determined by the internal fluid dynamics, is calculated with the CFD solver included in the NIST package. In the building, air motion is only affected by natural ventilation. For this reason, the interactions between the outside and the interior climatic and microclimatic parameters must be considered, taking into account also the different possible assumptions about the daily management of the openings of the building envelope. Several cases of release and dispersion of heavy fluid inside the working areas, under different boundary conditions, were considered. The sensitivity of the results to the different seasonal conditions was assessed and discussed. The complex internal geometry of the building was simulated by a combination of single zone models. The results showed an expectable presence of test gas emissions in the neighborhood of the test area and the possibility of buoyancy effects within the large building. A relatively stable concentration of the test gas emissions resulted from the application of the model, which was affected only by substantial variations of the climatic conditions.


2018 ◽  
Vol 3 (7) ◽  
pp. 357
Author(s):  
Lobna Hassan Ali Hassan Elgheriani ◽  
Parid Wardi ◽  
AbdulBasit Ali Ali Ahmed

Natural ventilation is an effectual passive design approach to create a better indoor thermal condition as well as energy efficiency. The primary goal of building design is providing a healthy and comfortable indoor environment titled as sustainable architecture. Literature suggests that the significant feature that alteration has to take place on for better energy performance is the envelope design. This paper aims to augment the Window to Wall Ratio (WWR), orientation and courtyard corridor size for improving the design of naturally ventilated courtyard high-rise residential buildings. Briefly, the findings indicate that contending with WWR, orientation and courtyard corridor size could increase the potential of improving its natural ventilation and thus, thermal performance.


Spatium ◽  
2009 ◽  
pp. 19-22 ◽  
Author(s):  
Aleksandra Krstic-Furundzic ◽  
Vesna Kosoric

Improvement of energy performances of the existing buildings in the suburban settlement Konjarnik in Belgrade, by the application of solar thermal systems is the topic presented in this paper. Hypothetical models of building improvements are created to allow the benefits of applying solar thermal collectors to residential buildings in Belgrade climate conditions to be estimated. This case study presents different design variants of solar thermal collectors integrated into a multifamily building envelope. The following aspects of solar thermal systems integration are analyzed in the paper: energy, architectural, ecological and economic. The results show that in Belgrade climatic conditions significant energy savings and reduction of CO2 emissions can be obtained with the application of solar thermal collectors.


2021 ◽  
pp. 014459872110204
Author(s):  
Aiman Albatayneh

The primary goal of this research was to minimise the energy consumed by heating and cooling loads in residential buildings in a sub-humid Mediterranean climate zone. This was achieved by optimising the design variables of various building envelopes using DesignBuilder software to compare the thermal performance of a baseline building model located in Ajlun (city in northern Jordan mountainous area) with the performance of other buildings with various design configurations. A sensitivity analysis (SA) was then conducted for twelve design variables to evaluate their influence on both cooling and heating loads using a regression method. The variables were divided into two groups according to their importance: a high importance design variables (window to wall ratio, local shading type, round floor construction, natural ventilation rate, infiltration rate (ac/h), glazing type, flat roof construction) and a low importance design variables (partition construction, site orientation, external wall construction, window blind type, window shading control schedule).The final results show significant reduction in the total energy consumption.


2017 ◽  
Vol 12 (1) ◽  
pp. 78-106 ◽  
Author(s):  
Issam Sobhy ◽  
Abderrahim Brakez ◽  
Brahim Benhamou

The purpose of this research is to assess thermal performance and energy saving of a residential building in the hot semi-arid climate of Marrakech (Morocco). The studied house is built as usual in Marrakech without any thermal insulation except for its external walls, facing East and West, which are double walls with a 5 cm air gap in between (“cavity wall” technique). The cavity wall effective thermal conductivity was carefully calculated taking into account both radiation and convection heat transfers. Experimental results, obtained from winter and summer monitoring of the house, show well dampening of air temperature, thanks to its thermal inertia. However, this temperature remained outside the standard thermal comfort zone leading to large cooling/heating load. Simulation results indicate that the cavity wall contributes to an overall reduction of 13% and 5% of the house heating and cooling loads respectively. Moreover, the addition of XPS roof thermal insulation significantly enhances the heating and cooling energy savings to 26% and 40% respectively.


Sign in / Sign up

Export Citation Format

Share Document