scholarly journals Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

2019 ◽  
Vol 10 ◽  
pp. 389-398 ◽  
Author(s):  
Raquel Rodriguez-Lamas ◽  
Dolors Pla ◽  
Odette Chaix-Pluchery ◽  
Benjamin Meunier ◽  
Fabrice Wilhelm ◽  
...  

The next generation of electronic devices requires faster operation velocity, higher storage capacity and reduction of the power consumption. In this context, resistive switching memory chips emerge as promising candidates for developing new non-volatile memory modules. Manganites have received increasing interest as memristive material as they exhibit a remarkable switching response. Nevertheless, their integration in CMOS-compatible substrates, such as silicon wafers, requires further effort. Here the integration of LaMnO3+δ as memristive material in a metal–insulator–metal structure is presented using a silicon-based substrate and the pulsed injection metal organic chemical vapour deposition technique. We have developed three different growth strategies with which we are able to tune the oxygen content and Mn oxidation state moving from an orthorhombic to a rhombohedral structure for the active LaMnO3+δ material. Furthermore, a good resistive switching response has been obtained for LaMnO3+δ-based devices fabricated using optimized growth strategies.

2011 ◽  
Vol 1337 ◽  
Author(s):  
S.M. Bishop ◽  
B.D. Briggs ◽  
K.D. Leedy ◽  
S. Addepalli ◽  
N.C. Cady

ABSTRACTMetal-insulator-metal (MIM) resistive switching devices are being pursued for a number of applications, including non-volatile memory and high density/low power computing. Reported resistive switching devices vary greatly in the choice of metal oxide and electrode material. Importantly, the choice of both the metal oxide and electrode material can have significant impact on device performance, their ability to switch, and the mode of switching (unipolar, bipolar, nonpolar) that results. In this study, three metal oxides (Cu2O, HfOx, and TiOx) were deposited onto copper bottom electrodes (BEs). Four different top electrode (TE) materials (Ni, Au, Al, and Pt) were then fabricated on the various metal oxides to form MIM structures. Devices were then characterized electrically to determine switching performance and behavior. Our results show that the metal TE plays a large role in determining whether or not the MIM structure will switch resistively and what mode of switching (unipolar, bipolar, or non-polar) is observed.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550010 ◽  
Author(s):  
Bai Sun ◽  
Wenxi Zhao ◽  
Yonghong Liu ◽  
Peng Chen

The electric-pulse-driven resistance change of metal/oxides/metal structure, which is called resistive switching effect, is a fascinating phenomenon for the development of next generation non-volatile memory. In this work, an outstanding bipolar resistive switching behavior of Ag / MoS 2/fluorine-doped tin oxide (FTO) device is demonstrated. The device can maintain superior reversible stability over 100 cycles with an OFF/ON-state resistance ratio of about 103 at room temperature.


Author(s):  
K.M. Jones ◽  
M.M. Al-Jassim ◽  
J.M. Olson

The epitaxial growth of III-V semiconductors on Si for integrated optoelectronic applications is currently of great interest. GaP, with a lattice constant close to that of Si, is an attractive buffer between Si and, for example, GaAsP. In spite of the good lattice match, the growth of device quality GaP on Si is not without difficulty. The formation of antiphase domains, the difficulty in cleaning the Si substrates prior to growth, and the poor layer morphology are some of the problems encountered. In this work, the structural perfection of GaP layers was investigated as a function of several process variables including growth rate and temperature, and Si substrate orientation. The GaP layers were grown in an atmospheric pressure metal organic chemical vapour deposition (MOCVD) system using trimethylgallium and phosphine in H2. The Si substrates orientations used were (100), 2° off (100) towards (110), (111) and (211).


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


Sign in / Sign up

Export Citation Format

Share Document