scholarly journals An overview of microneedle applications, materials, and fabrication methods

2021 ◽  
Vol 12 ◽  
pp. 1034-1046
Author(s):  
Zahra Faraji Rad ◽  
Philip D Prewett ◽  
Graham J Davies

Microneedle-based microdevices promise to expand the scope for delivery of vaccines and therapeutic agents through the skin and withdrawing biofluids for point-of-care diagnostics – so-called theranostics. Unskilled and painless applications of microneedle patches for blood collection or drug delivery are two of the advantages of microneedle arrays over hypodermic needles. Developing the necessary microneedle fabrication processes has the potential to dramatically impact the health care delivery system by changing the landscape of fluid sampling and subcutaneous drug delivery. Microneedle designs which range from sub-micron to millimetre feature sizes are fabricated using the tools of the microelectronics industry from metals, silicon, and polymers. Various types of subtractive and additive manufacturing processes have been used to manufacture microneedles, but the development of microneedle-based systems using conventional subtractive methods has been constrained by the limitations and high cost of microfabrication technology. Additive manufacturing processes such as 3D printing and two-photon polymerization fabrication are promising transformative technologies developed in recent years. The present article provides an overview of microneedle systems applications, designs, material selection, and manufacturing methods.

Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 648 ◽  
Author(s):  
Farzad Forouzandeh ◽  
Nuzhet N. Ahamed ◽  
Meng-Chun Hsu ◽  
Joseph P. Walton ◽  
Robert D. Frisina ◽  
...  

Reservoir-based drug delivery microsystems have enabled novel and effective drug delivery concepts in recent decades. These systems typically comprise integrated storing and pumping components. Here we present a stand-alone, modular, thin, scalable, and refillable microreservoir platform as a storing component of these microsystems for implantable and transdermal drug delivery. Three microreservoir capacities (1, 10, and 100 µL) were fabricated with 3 mm overall thickness using stereolithography 3D-printing technology, enabling the fabrication of the device structure comprising a storing area and a refill port. A thin, preformed dome-shaped storing membrane was created by the deposition of parylene-C over a polyethylene glycol sacrificial layer, creating a force-free membrane that causes zero forward flow and insignificant backward flow (2% of total volume) due to membrane force. A septum pre-compression concept was introduced that enabled the realization of a 1-mm-thick septa capable of ~65000 leak-free refill punctures under 100 kPa backpressure. The force-free storing membrane enables using normally-open micropumps for drug delivery, and potentially improves the efficiency and precision of normally-closed micropumps. The ultra-thin septum reduces the thickness of refillable drug delivery devices, and is capable of thousands of leak-free refills. This modular and scalable device can be used for drug delivery in different laboratory animals and humans, as a sampling device, and for lab-on-a-chip and point-of-care diagnostics applications.


2016 ◽  
Vol 5 (04) ◽  
pp. 4524
Author(s):  
Abdullah Shaikh Farooque ◽  
Md. Azharuddin Ismail Atar*

Medicinal plants are being widely used, either as single drug or in combination in health care delivery system. Indian Sarsaparilla, Hemidesmus indicus (Family: Asclepiadaceae) is a commonly known Indian Medicinal Plant, which is widely recognized in traditional systems of Medicine. It contains various phytoconstituents belonging to the category glycosides, flavonoids, tannins, sterols and volatile oils. It has been reported as useful in biliousness, blood diseases, dysentery, diarrhea, respiratory disorders, skin diseases, syphilis, fever, leprosy, leucoderma, leucorrhoea, itching, bronchitis, asthma, eye diseases, epileptic fits in children, kidney and urinary disorders, loss of appetite, burning sensation, dyspepsia, nutritional disorders, ulcer and rheumatism. Several studies are being carried towards its activities like analgesic, anti-inflammatory, antiulcer, hepatoprotective, antioxidant and helicobactericidal properties. In our study we have evaluated antacid activity of sariva (Anantmool) by using In-Vitro method, i.e. ANC (Acid Neutralizing Capacity). This evaluation was done by comparing the ANC of sariva macerated & powdered drug with water as blank & standard drug i.e. NaHCO3. Based on this In-Vitro experiment, we can conclude that, the macerated & powdered drug of sariva (Anantmool) evaluated in this study, varied in potency as measured in terms of their ANC. These results having ** i.e. P < 0.01 & Passed the normality test. However, the present study being in-vitro, the effects of antacid may vary In-Vitro; individual variations also contribute to the ultimate effectiveness of as antacid.        


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4254
Author(s):  
Paulina A. Quiñonez ◽  
Leticia Ugarte-Sanchez ◽  
Diego Bermudez ◽  
Paulina Chinolla ◽  
Rhyan Dueck ◽  
...  

The work presented here describes a paradigm for the design of materials for additive manufacturing platforms based on taking advantage of unique physical properties imparted upon the material by the fabrication process. We sought to further investigate past work with binary shape memory polymer blends, which indicated that phase texturization caused by the fused filament fabrication (FFF) process enhanced shape memory properties. In this work, two multi-constituent shape memory polymer systems were developed where the miscibility parameter was the guide in material selection. A comparison with injection molded specimens was also carried out to further investigate the ability of the FFF process to enable enhanced shape memory characteristics as compared to other manufacturing methods. It was found that blend combinations with more closely matching miscibility parameters were more apt at yielding reliable shape memory polymer systems. However, when miscibility parameters differed, a pathway towards the creation of shape memory polymer systems capable of maintaining more than one temporary shape at a time was potentially realized. Additional aspects related to impact modifying of rigid thermoplastics as well as thermomechanical processing on induced crystallinity are also explored. Overall, this work serves as another example in the advancement of additive manufacturing via materials development.


ACS Nano ◽  
2021 ◽  
Author(s):  
Enrique Valera ◽  
Aaron Jankelow ◽  
Jongwon Lim ◽  
Victoria Kindratenko ◽  
Anurup Ganguli ◽  
...  

2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


2020 ◽  
Vol 37 (12) ◽  
pp. 839.1-839
Author(s):  
Dominic Craver ◽  
Aminah Ahmad ◽  
Anna Colclough

Aims/Objectives/BackgroundRapid risk stratification of patients is vital for Emergency Department (ED) streaming during the COVID-19 pandemic. Ideally, patients should be split into red (suspected/confirmed COVID-19) and green (non COVID-19) zones in order to minimise the risk of patient-to-patient and patient-to-staff transmission. A robust yet rapid streaming system combining clinician impression with point-of-care diagnostics is therefore necessary.Point of care ultrasound (POCUS) findings in COVID-19 have been shown to correlate well with computed tomography (CT) findings, and it therefore has value as a front-door diagnostic tool. At University Hospital Lewisham (a district general hospital in south London), we recognised the value of early POCUS and its potential for use in patient streaming.Methods/DesignWe developed a training programme, ‘POCUS for COVID’ and subsequently integrated POCUS into streaming of our ED patients. The training involved Zoom lectures, a face to face practical, a 10 scan sign off process followed by a final triggered assessment. Patient outcomes were reviewed in conjunction with their scan reports.Results/ConclusionsCurrently, we have 21 ED junior doctors performing ultrasound scans independently, and all patients presenting to our department are scanned either in triage or in the ambulance. A combination of clinical judgement and scan findings are used to stream the patient to an appropriate area.Service evaluation with analysis of audit data has found our streaming to be 94% sensitive and 79% specific as an indicator of COVID 19. Further analysis is ongoing.Here we present both the structure of our training programme and our integrated streaming pathway along with preliminary analysis results.


Sign in / Sign up

Export Citation Format

Share Document