scholarly journals The morphology of silver nanoparticles prepared by enzyme-induced reduction

2012 ◽  
Vol 3 ◽  
pp. 404-414 ◽  
Author(s):  
Henrik Schneidewind ◽  
Thomas Schüler ◽  
Katharina K Strelau ◽  
Karina Weber ◽  
Dana Cialla ◽  
...  

Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anish Stephen ◽  
Sankar Seethalakshmi

This paper is the first of its kind for development of rapid and ecofriendly method for synthesis of silver nanoparticles from aqueous solution of silver nitrate using the flavonoid “hesperidin” and optimization of the methodology. There is formation of stable spherical silver nanoparticles in the size range of 20–40 nm. Optimization of methodology in terms of concentration of reactants and pH of the reaction mixture reduced the reaction time for silver nanoparticle formation to 2 mins. Silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). UV-vis spectroscopy derived spectrum demonstrated a peak of 430 nm which corresponds to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy revealed spherical shaped silver nanoparticles in the size range of 20–40 nm.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


1986 ◽  
Vol 64 (10) ◽  
pp. 1369-1373 ◽  
Author(s):  
U. von Sacken ◽  
D. E. Brodie

The structure of polycrystalline Zn3P2 films has been studied for 1- to 2-μm-thick vacuum-deposited films on glass substrates. Transmission electron microscopy and X-ray diffraction techniques have been used to obtain a detailed, quantitative analysis of the film structure. The initial growth consists of small (≤ 10 nm), randomly oriented grains. As the film thickness increases, the growth of crystallites with the {220} planes oriented approximately parallel to the substrate is favoured, and a columnar structure develops along with a highly preferred orientation. This structure has been observed directly by transmission electron microscopy of thin cross sections of the films. The size of the grains at the free surface increases with the film thickness, reaching approximately 200–300 nm when the film is 1 μm thick. The effects of substrate temperature and low-energy (0.5–2 keV) electron bombardment of the film during growth have also been studied. Neither substrate temperature nor electron bombardment appear to have a major effect on the film structure. The primary effect of electron bombardment appears to be the creation of preferred nucleation sites on the substrate.


BioResources ◽  
2006 ◽  
Vol 1 (2) ◽  
pp. 220-232 ◽  
Author(s):  
H. P. S. Abdul Khalil ◽  
M. Siti Alwani ◽  
A. K. Mohd Omar

The chemical composition, anatomical characteristics, lignin distribution, and cell wall structure of oil palm frond (OPF), coconut (COIR), pine-apple leaf (PALF), and banana stem (BS) fibers were analyzed. The chemical composition of fiber was analyzed according to TAPPI Methods. Light microscopy (LM) and transmission electron microscopy (TEM) were used to observe and determine the cell wall structure and lignin distribution of various agro-waste fibers. The results revealed differences in anatomical characteristics, lignin distributions, and cell wall structure of the different types of fibers investigated. Nevertheless, transmission electron microscopy (TEM) micrographs have confirmed that the well wall structure, in each case, could be described in terms of a classical cell wall structure, consisting of primary (P) and secondary (S 1 , S 2 , and S 3 ) layers.


Author(s):  
Nabraj Bhattarai ◽  
Subarna Khanal ◽  
Pushpa Raj Pudasaini ◽  
Shanna Pahl ◽  
Dulce Romero-Urbina

Citrate stabilized silver (Ag) colloidal solution were synthesized and characterized for crystallographic and surface properties by using transmission electron microscopy (TEM) and zeta potential measurement techniques. TEM investigation depicted the size of Ago ranges from 5 to 50 nm with smaller particles having single crystal structure while larger particles with structural defects (such as multiply twinned, high coalescence and Moire patterns). ?-potential measurement confirms the presence of Ag+ in nAg stock solution. The shift in ?-potential measurement by +25.1 mV in the filtered solution suggests the presence of Ag+ in Ago nanoparticles.


2019 ◽  
Vol 19 (11) ◽  
pp. 7487-7492 ◽  
Author(s):  
Supriya ◽  
Jayanta Kumar Basu ◽  
Sonali Sengupta

Synthesis of silver nanoparticles embedded on calcium alginate film and the catalytic property of this film in the reduction of nitrobenzene with sodium borohydride are demonstrated in this work. Natural polymer alginate acts as effective reducing and stabilizing agent in synthesis of silver nanoparticles. Effect of different parameters on the preparation of silver nanoparticles, such as, temperature, concentration of silver precursor and heating time was investigated. As-prepared silver nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, UV-Vis spectrometry, and atomic absorption spectrometry. Transmission electron microscopy analysis con-firms the formation of silver nanoparticles with particles size range of 3–19 nm and average particle size was found to be 10±4 nm. Effect of concentration of nitrobenzene and sodium borohydride, catalyst loading and temperature on the catalytic reduction of nitrobenzene was studied. Reusability of catalyst was examined in this reduction reaction and the catalyst shows good activity up to 10th run.


1987 ◽  
Vol 1 (2) ◽  
pp. 322-329 ◽  
Author(s):  
H. Warshawsky

The purpose of this paper is to review evidence which casts doubt on the interpretation universally applied to hexagonal images seen in sectioned enamel. The evidence is based on two possible models to explain the hexagonal profiles seen in mammalian enamel with transmission electron microscopy. The "hexagonal ribbon" model proposes that hexagonal profiles are true cross-sections of elongated hexagonal ribbons. The "rectangular ribbon" model proposes that hexagonal profiles are caused by three-dimensional segments that are parallelepipeds contained in the Epon section. Since shadow projections of such rectangular segments give angles that are inconsistent with the hexagonal unit cell, a model based on ribbons with rhomboidal cut ends and angles of 60 and 120° is proposed. The "rhomboidal ribbon" model projects shadows with angles that are predicted by the unit cell. It is suggested that segments of such crystallites in section project as opaque hexagons on the imaging plane in routine transmission electron microscopy. Morphological observations on crystallites in sections - together with predictions from the hexagonal, rectangular, and rhomboidal ribbon models - indicate that crystallites in rat incisor enamel are flat ribbons with rhomboidal cross-sectional shape. Hexagonal images in electron micrographs of thin-sectioned enamel can result from rhomboidal-ended, parallelepiped-shaped segments of these crystallites projected and viewed as two-dimensional shadows.


Sign in / Sign up

Export Citation Format

Share Document