scholarly journals Grain boundaries and coincidence site lattices in the corneal nanonipple structure of the Mourning Cloak butterfly

2013 ◽  
Vol 4 ◽  
pp. 292-299 ◽  
Author(s):  
Ken C Lee ◽  
Uwe Erb

In this study the highly ordered corneal nanonipple structure observed on the Mourning Cloak butterfly (Nymphalis antiopa) is analyzed with a particular emphasis on the high-angle grain-boundary-like defects that are observed between individual nanonipple crystals. It is shown that these grain boundaries are generated by rows of topological coordination defects, which create very specific misorientations between adjacent crystals. These specific orientations form coincidence site lattices, which (i) have unit cells larger than the unit cell in each individual crystal and (ii) extend from one crystal to the next, effectively creating order over areas larger than the individual crystals. A comparison to similar coincidence site lattices in engineering materials is made and the importance of such arrangements in terms of nipple packing density, corneal lens curvature and potential optical properties is discussed.

1992 ◽  
Vol 295 ◽  
Author(s):  
Stuart Mckernan ◽  
C. Barry Carter

AbstractGeneral high-angle tilt grain boundaries may be described by an arrangement of repeating structural units. Some grain-boundary defects may also be modeled by the incorporation of structural units of related boundary structures into the boundary. The simulation of these structures requires the use of prohibitively large unit cells. The possibility of modeling these boundaries by the superposition of image simulations of the individual structural units isinvestigated.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
C. W. Price

Little evidence exists on the interaction of individual dislocations with recrystallized grain boundaries, primarily because of the severely overlapping contrast of the high dislocation density usually present during recrystallization. Interesting evidence of such interaction, Fig. 1, was discovered during examination of some old work on the hot deformation of Al-4.64 Cu. The specimen was deformed in a programmable thermomechanical instrument at 527 C and a strain rate of 25 cm/cm/s to a strain of 0.7. Static recrystallization occurred during a post anneal of 23 s also at 527 C. The figure shows evidence of dissociation of a subboundary at an intersection with a recrystallized high-angle grain boundary. At least one set of dislocations appears to be out of contrast in Fig. 1, and a grainboundary precipitate also is visible. Unfortunately, only subgrain sizes were of interest at the time the micrograph was recorded, and no attempt was made to analyze the dislocation structure.


1991 ◽  
Vol 238 ◽  
Author(s):  
Douglas E. Meyers ◽  
Alan J. Ardell

ABSTRACTThe results of our initial efforts at measuring the fracture strengths of grain boundaries In Ni3Al using a miniaturized disk-bend test are presented. The samples tested were 3 mm in diameter and between 150 and 300 μm thick. An Ingot of directlonally-solidlfled, boron-free Ni3Al containing 24% Al was annealed between 1300 and 1350 °C to induce grain growth, producing many grain boundaries In excess of 1.5 mm in length. Specimens were cut from these In such a way that one long grain boundary was located near a diameter of the specimen. The relative orientations of the grains on either side of the boundary were determined from electron channeling patterns. Low-angle boundaries are so strong they do not fracture; Instead the samples deform In a completely ductile manner. High-angle boundaries always fracture, but only after considerable plastic deformation of the two grains flanking them. Fracture is Indicated by a load drop in the load vs. displacement curves. A method involving extrapolation of the elastic portion of these curves to the displacement at fracture is used to estimate the fracture stresses. This procedure yields consistent values of the fracture strengths of high-angle boundaries. The measured stresses are large (∼2 to 3 GPa), but considerably smaller than those required for the fracture of special boundaries, as predicted by computer simulations. No correlation was found between the fracture stresses or loads and the geometry of the high-angle boundaries, many of which are close to, but deviate from, coincident site lattice orientations.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Yoshiyuki Kaji ◽  
Tomohito Tsuru ◽  
Yoji Shibutani

AbstractThe grain boundary has been recognized for one of the major defect structures in determining the material strength. It is increasingly important to understand the individual characteristics of various types of grain boundaries due to the recent advances in material miniaturization technique.In the present study three types of grain boundaries of coincidence site lattice (CSL), small angle (SA), and random types are considered as the representative example of grain boundaries. The grain boundary energies and atomic configurations of CSL are first evaluated by first-principle density functional theory (DFT) and the embedded atom method (EAM) calculations. SA and random grain boundaries are subsequently constructed by the same EAM and the fundamental characteristics are investigated by the discrete dislocation mechanics models and the Voronoi polyhedral computational geometric method. As the result, it is found that the local structures are well accorded with the previously reported high resolution-transmission electron microscope (HR-TEM) observations, and that stress distributions of CSL and SA grain boundaries are localized around the grain boundary core. The random grain boundary shows extremely heterogeneous core structures including a lot of pentagon-shaped Voronoi polyhedral resulting from the amorphous-like structure.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


1998 ◽  
Vol 13 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Yumi H. Ikuhara ◽  
Shinji Kondoh ◽  
Koichi Kikuta ◽  
Shin-ichi Hirano

Microstructures of ulexite were investigated by CTEM and low electron dose HREM. It was found that the longitudinal grains in ulexite were oriented to c-direction to form a bundle structure. There were a number of small-angle grain boundaries and stacking faults inside a grain in the ulexite. Cleavage microcracks and stacking faults were mostly introduced on the {010} of the ulexite. The high-angle grain boundaries mainly consisted of high coincidence boundaries, which was confirmed by a comparison of observed contact angles and calculated degree of coincidence at the boundaries. The light transmittance properties of the ulexite would depend on the defects such as stacking fault, small-angle grain boundary, and high-angle grain boundary.


Author(s):  
F. A. Bannister ◽  
M. H. Hey

SummaryCorrelated data prove the approximate constancy of the number of oxygen atoms in the unit cells of several nepheline and elaeolite specimens. Thence the number of atoms of each kind per unit cell have been counted. The cell-volumes and optical properties have slso been correlated with the chemical composition. An approximate structure is suggested which, together with the chemical work, explains the variable composition of nepheline. The contents of the unit cell may be written Si16−nAln(Na,K,½Ca)n where n ranges from 6.6 to 8.2. Kaliophilite is shown to possess a much larger cell than that of nepheline, and its Lauegram exhibits higher symmetry. 'Pseudonepheline' (rich in potassium) has a slightly greater cell-volume than normal nepheline, but its Lauegram is almost identical and its axial ratio only slightly less.


2004 ◽  
Vol 467-470 ◽  
pp. 801-806 ◽  
Author(s):  
Vera G. Sursaeva

When a bicrystal or polycrystal are subjected to a change in temperature, the individual responses of the two adjoining crystals may differ in a manner, which tends to produce a dilatational mismatch along grain boundaries. If compatibility is to be retained along the interface, an additional set of stresses must then be generated in order to conserve this compatibility. ‘Compatibility stresses’ will also be generated whenever a polycrystal is heated or cooled and the thermal expansion coefficients of the individual grains are different due to thermal expansion anisotropy. In such cases adjacent grains will attempt to change dimensions and develop mismatches by amounts controlled by the parameter Δa*ΔΤ, where Δa is the difference between the thermal expansion coefficients in the appropriate directions, and ΔΤ is the temperature change. These ‘compatibility stresses’ may be relieves if grain boundary motion, triple junction migration and grain growth are possible. These ‘compatibility stresses’ may play important role in the kinetic behavior of the microstructure ranging from influencing the behavior of lattice dislocations near the grain boundaries to promoting grain boundary and triple junction dragging or moving. The motion of the ‘special’ grain boundaries, triple junctions with ‘special’ grain boundaries and twins under the influence of internal mechanical stresses is the main subject of this paper.


Sign in / Sign up

Export Citation Format

Share Document