scholarly journals One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer

2014 ◽  
Vol 5 ◽  
pp. 380-385 ◽  
Author(s):  
Arkadius Maciollek ◽  
Helmut Ritter

A facile and one pot synthesis of silver nanoparticles with narrow size distributions using silver nitrate and a copolymer 1 from N-isopropylacrylamide (NIPAM) and mono-(1H-triazolylmethyl)-2-methylacryl-β-cyclodextrin acting as reductant and stabilizer without using any additional reducing agent is reported. The reduction was carried out in aqueous solution under pH neutral conditions at room temperature. The results of dynamic light scattering analysis and transmission electron microscopy show adjustable particle sizes from 30–100 nm, due to variation of silver nitrate concentration, the polymeric reducing and stabilisation agent concentration or reaction time. The spherical structure of the silver nanoparticles has been confirmed by UV–vis spectroscopy and transmission electron microscopy. The optical properties of the nanoparticles have also been characterized by fluorescence spectroscopy. The formed spherical particles are stable in aqueous medium at room temperature over a period of several weeks. Furthermore the changes in the optical properties of the nanoparticles due to thermo induced volume phase transition behavior of the thermoresponsive cyclodextrin containing polymer 1 have been characterized by UV–vis spectroscopy.

Author(s):  
AJI JOVITHA AT ◽  
DEIVASIGAMANI B

Objective: The present study attempted to synthesize AgNPs from mangrove bark Rhizophora mucronata and analyze characteristics. The synthesized AgNPs analyzed with UV–vis spectroscopy, high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray (EDX) for confirming the nanoparticles. Methods: The dried R. mucronata bark was powdered and kept in at 55°C for 15 min in a water bath and cooled at room temperature to get the extract. The R. mucronata bark extract was treated with silver nitrate and kept overnight in the dark environment which will turn the solution to dark brown color. The silver nanoparticles were characterized using UV–visible absorption at room temperature. Further characterization was also done with X-ray diffraction, high-resolution transmission electron microscope measurements, and DLS analysis. Results: The synthesized AgNPs were analyzed with various analytical methods that revealed the abundant presence of silver nanoparticles. The UV–vis spectroscopy analysis exposed the surface plasmon resonance peak of 422 nm. High-resolution transmission electron microscopy (HRTEM) analysis indicated the size ranging from 10 nm to 200 nm in diameter and a spherical shaped poly dispersal of the particles. The energy-dispersive X-ray (EDX) and DLS also confirmed the presence of silver atoms. Conclusion: Silver nanoparticles of Rhizophora mucronata bark revealed a well-defined structure and may be used in antimicrobial function in further researches.


2017 ◽  
Vol 263 ◽  
pp. 165-169
Author(s):  
Silvia Chowdhury ◽  
Faridah Yusof ◽  
Nadzril Sulaiman ◽  
Mohammad Omer Faruck

In this article, we have studied the process of silver nanoparticles (AgNPs) aggregation and to stop aggregation 0.3% Polyvinylpyrrolidone (PVP) was used. Aggregation study carried out via UV-vis spectroscopy and it is reported that the absorption spectrum of spherical silver nanoparticles were found a maximum peak at 420 nm wavelength. Furthermore, Transmission Electron Microscopy (TEM) were used to characterized the size and shape of AgNPs, where the average particle size is around 10 to 25 nm in diameter and the AgNPs shape is spherical. Next, Dynamic Light Scattering (DLS) were used, owing to observed size distribution and self-correlation of AgNPs.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Noura El-Ahmady El-Naggar ◽  
Attiya Mohamedin ◽  
Sarah Shawqi Hamza ◽  
Abdel-Dayem Sherief

Biological method for silver nanoparticles synthesis has been developed to obtain cost effective, clean, nontoxic, and ecofriendly size-controlled nanoparticles. The objective of this study is extracellular biosynthesis of antimicrobial AgNPs using cell-free supernatant of a localStreptomycessp. strain SSHH-1E. Different medium composition and fermentation conditions were screened for maximal AgNPs biosynthesis using Plackett-Burman experimental design and the variables with statistically significant effects were selected to study their combined effects and to find out the optimum values using a Box-Behnken design. The synthesized AgNPs were characterized using UV-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Rapid biosynthesis of AgNPs was achieved by addition of 1 mM AgNO3solution to the cell-free supernatant. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy which confirmed the presence of AgNPs.Streptomycessp. SSHH-1E was identified asStreptomyces narbonensisSSHH-1E. Transmission electron microscopy study indicated that the shape of AgNPs is spherical and the size is ranging from 20 to 40 nm. Fourier transform infrared spectroscopy analysis provides evidence for proteins as possible reducing and capping agents. Furthermore, the biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic Gram-positive and Gram-negative bacteria and yeast. The maximum biosynthesis of AgNPs was achieved at initial pH of 8, peptone of 0.5 g, and inoculum age of 48 h. The statistical optimization resulted in a 4.5-fold increase in the production of AgNPs byStreptomyces narbonensisSSHH-1E.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anish Stephen ◽  
Sankar Seethalakshmi

This paper is the first of its kind for development of rapid and ecofriendly method for synthesis of silver nanoparticles from aqueous solution of silver nitrate using the flavonoid “hesperidin” and optimization of the methodology. There is formation of stable spherical silver nanoparticles in the size range of 20–40 nm. Optimization of methodology in terms of concentration of reactants and pH of the reaction mixture reduced the reaction time for silver nanoparticle formation to 2 mins. Silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). UV-vis spectroscopy derived spectrum demonstrated a peak of 430 nm which corresponds to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy revealed spherical shaped silver nanoparticles in the size range of 20–40 nm.


2002 ◽  
Vol 01 (05n06) ◽  
pp. 581-585
Author(s):  
SONG JA JO ◽  
YOUNG SOO KANG

Semiconductor CdTe nanoparticles were synthesized by the γ-irradiation of Cd ion complex at room temperature. Cd-olate complex was reacted with aqueous NaHTe solution. The products were investigated by X-ray Powder Diffraction (XRD) and Transmission Electron Microscopy (TEM). The optical properties of CdTe were investigated with UV-vis and photoluminescence (PL) spectra.


2015 ◽  
Vol 18 (2) ◽  
pp. 75 ◽  
Author(s):  
Abdel Ghany Tarek Mohamed

Microbial assisted biosynthesis of nanoparticles is a rapidly progressing area of nanobiotechnology. Inthis paper Stachybotrys chartarum assisted extracellular synthesis of silver nanoparticles (AgNPs) is reportedwhen challenged with 1mM silver nitrate (AgNO3). The characterization of AgNPs was carried out visualobservation and UV-Vis spectrophotometry. Further analysis carried out by Fourier Transform InfraredSpectroscopy (FTIR), provides evidence for the presence of proteins as capping agent, which helps in increasingthe stability of the synthesized AgNPs. Transmission Electron Microscopy (TEM) investigations confi rmedthat AgNPs were formed. The synthesized silver nanoparticles were found in the range of 65-108 nm. Finally,the antimicrobial susceptibility of AgNPs synthesized was investigated which exhibited more potent activityagainst bacteria than fungi compared with using silver nitrate at concentration 1mM. Keywords: Antimicrobial activity, Stachybotrys chartarum, Silver nanoparticles


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 909 ◽  
Author(s):  
Federico Tasca ◽  
Riccarda Antiochia

The development of new nanomaterials is gaining increasing attention due to their extensive applications in fields ranging from medicine to food and cultural heritage. Green nanoparticles provide advantages compared to conventional nanoparticles as their synthesis is environmentally-friendly and does not require the use of high temperatures, pressure, or toxic chemicals. In this paper, green silver nanoparticles (AgNPs) have been synthesized according to a new method using quercetin as a reducing agent at room temperature. The synthesized AgNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and dynamic light scattering (DLS) techniques and successively tested for biocide activity by studying their effects in the inhibition of bacterial growth. The results demonstrated that the smaller the AgNPs size, the greater their biocide activity. In particular, AgNPs with a diameter of 8 nm showed a minimum inhibitory concentration (MIC) value of 1.0 μg/mL against Streptococcus sp., Escherichia coli and Candida sp. microorganisms, while AgNPs with a larger diameter of about 20 nm were able to inhibit microbial of all selected pathogens at a higher MIC value of 2.5 μg/mL.


2010 ◽  
Vol 9 ◽  
pp. 77-81 ◽  
Author(s):  
Esaú Solano-Ruiz ◽  
Roberto Sato Berrú ◽  
J. Ocotlán-Flores ◽  
José M. Saniger

In this work, we present the synthesis of silver nanoparticles by ultrasonic irradiation of a solution containing silver nitrate as precursor and sodium citrate as reducing agent. These nanoparticles were characterized by ultraviolet-visible spectroscopy and transmission electron microscopy (TEM) and then were tested as SERS-active colloids.


2010 ◽  
Vol 168-169 ◽  
pp. 35-38 ◽  
Author(s):  
E.A. Gan'shina ◽  
L.L. Golik ◽  
V.I. Kovalev ◽  
Z.E. Kun’kova ◽  
M.P. Temiryazeva ◽  
...  

Optical and magneto-optical properties of In(Ga)MnAs layers fabricated by laser ablation on GaAs(100) substrates were studied. Spectra of the optical constants and the transversal Kerr effect (TKE) depended substantially on the conditions of layer fabrication and testified to the presence of MnAs inclusions in all the samples. The cross-sectional transmission electron microscopy revealed the presence in the layers of inclusions 10-40 nm in size. At room temperature, a strong resonant band was observed in the TKE spectra of some In(Ga)MnAs layers in the energy range 0.5-2.7 eV. The resonant character of the TKE spectra was explained by excitation of surface plasmons in the MnAs nanoclusters embedded in the semiconductor host.


NANO ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. 1650130
Author(s):  
Dehui Li ◽  
Chen Zhang ◽  
Yajie Zhang ◽  
Weichen Qi ◽  
Jinxiang Dong ◽  
...  

Nearly monodisperse bullet-like Cu3ZnInSnS6 (CZITS) nanocrystals with wurtzite structure were successfully synthesized through optimized noninjection method. The structure, composition, morphology and optical properties of CZITS nanocrystals were characterized by X-ray diffraction, energy dispersive spectrometry, transmission electron microscopy and UV-Vis–NIR absorption. Their suitable bandgap and photoresponsive behavior indicate a high potential application in the field of solar cells. The growth mechanism of the as-synthesized CZITS nanocrystals was preliminarily discussed. It was found that the formation of CZITS could be separated into two steps: nucleation of Cu7S4 and growth of the CZITS main body.


Sign in / Sign up

Export Citation Format

Share Document