scholarly journals Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

2018 ◽  
Vol 9 ◽  
pp. 530-544 ◽  
Author(s):  
Nagamalai Vasimalai ◽  
Vânia Vilas-Boas ◽  
Juan Gallo ◽  
María de Fátima Cerqueira ◽  
Mario Menéndez-Miranda ◽  
...  

Carbon dots have demonstrated great potential as luminescent nanoparticles in bioapplications. Although such nanoparticles appear to exhibit low toxicity compared to other metal luminescent nanomaterials, today we know that the toxicity of carbon dots (C-dots) strongly depends on the protocol of fabrication. In this work, aqueous fluorescent C-dots have been synthesized from cinnamon, red chilli, turmeric and black pepper, by a one-pot green hydrothermal method. The synthesized C-dots were firstly characterized by means of UV–vis, fluorescence, Fourier transform infrared and Raman spectroscopy, dynamic light scattering and transmission electron microscopy. The optical performance showed an outstanding ability for imaging purposes, with quantum yields up to 43.6%. Thus, the cytotoxicity of the above mentioned spice-derived C-dots was evaluated in vitro in human glioblastoma cells (LN-229 cancer cell line) and in human kidney cells (HK-2 non-cancerous cell line). Bioimaging and viability studies were performed with different C-dot concentrations from 0.1 to 2 mg·mL−1, exhibiting a higher uptake of C-dots in the cancer cultures compared to the non-cancerous cells. Results showed that the spice-derived C-dots inhibited cell viability dose-dependently after a 24 h incubation period, displaying a higher toxicity in LN-229, than in HK-2 cells. As a control, C-dots synthesized from citric acid did not show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the surface of the C-dots might be responsible for the selective cytotoxicity, as suggested by the presence of piperine in the surface of black pepper C-dots analysed by ESI-QTOF-MS.

2019 ◽  
Vol 25 (47) ◽  
pp. 11085-11097 ◽  
Author(s):  
Filippo Doria ◽  
Erica Salvati ◽  
Luca Pompili ◽  
Valentina Pirota ◽  
Carmen D'Angelo ◽  
...  

2008 ◽  
Vol 102 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Paola Palozza ◽  
Diana Bellovino ◽  
Rossella Simone ◽  
Alma Boninsegna ◽  
Francesco Cellini ◽  
...  

Lycopene β-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of β-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced β-carotene release and therefore cell growth inhibition. To induce with purified β-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that β-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with β-carotene in promoting cell growth arrest.


2003 ◽  
Vol 68 (4) ◽  
pp. 779-791 ◽  
Author(s):  
Petr Čapek ◽  
Miroslav Otmar ◽  
Milena Masojídková ◽  
Ivan Votruba ◽  
Antonín Holý

Heating of 6-(benzylamino)-2-chloro-9-deazapurine (3) with ethanolamine afforded 6-(benzylamino)-2-[(2-hydroxyethyl)amino]-9-deazapurine (8). Its treatment with formaldehyde in alkaline solution, after protection of the OH group with DMTr, led to hydroxymethylation at position 9. Conversion of the hydroxymethyl group to methyl was performed by catalytic hydrogenation under simultaneous deprotection, which resulted in the formation of the 9-deaza analogue 1 of olomoucine. Compound 1 does not exhibit any significant in vitro cell growth inhibition of CCRF-CEM, HeLa and L-1210 cell lines. Cytostatic activity was found in 6-(benzylamino)-9-deazapurine (2) and its 2-chloro derivative 3 in CCRF-CEM cells with IC50 13.3 and 15.8 μM, respectively.


Sign in / Sign up

Export Citation Format

Share Document