scholarly journals Dyads of G‐Quadruplex Ligands Triggering DNA Damage Response and Tumour Cell Growth Inhibition at Subnanomolar Concentration

2019 ◽  
Vol 25 (47) ◽  
pp. 11085-11097 ◽  
Author(s):  
Filippo Doria ◽  
Erica Salvati ◽  
Luca Pompili ◽  
Valentina Pirota ◽  
Carmen D'Angelo ◽  
...  
2018 ◽  
Vol 9 ◽  
pp. 530-544 ◽  
Author(s):  
Nagamalai Vasimalai ◽  
Vânia Vilas-Boas ◽  
Juan Gallo ◽  
María de Fátima Cerqueira ◽  
Mario Menéndez-Miranda ◽  
...  

Carbon dots have demonstrated great potential as luminescent nanoparticles in bioapplications. Although such nanoparticles appear to exhibit low toxicity compared to other metal luminescent nanomaterials, today we know that the toxicity of carbon dots (C-dots) strongly depends on the protocol of fabrication. In this work, aqueous fluorescent C-dots have been synthesized from cinnamon, red chilli, turmeric and black pepper, by a one-pot green hydrothermal method. The synthesized C-dots were firstly characterized by means of UV–vis, fluorescence, Fourier transform infrared and Raman spectroscopy, dynamic light scattering and transmission electron microscopy. The optical performance showed an outstanding ability for imaging purposes, with quantum yields up to 43.6%. Thus, the cytotoxicity of the above mentioned spice-derived C-dots was evaluated in vitro in human glioblastoma cells (LN-229 cancer cell line) and in human kidney cells (HK-2 non-cancerous cell line). Bioimaging and viability studies were performed with different C-dot concentrations from 0.1 to 2 mg·mL−1, exhibiting a higher uptake of C-dots in the cancer cultures compared to the non-cancerous cells. Results showed that the spice-derived C-dots inhibited cell viability dose-dependently after a 24 h incubation period, displaying a higher toxicity in LN-229, than in HK-2 cells. As a control, C-dots synthesized from citric acid did not show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the surface of the C-dots might be responsible for the selective cytotoxicity, as suggested by the presence of piperine in the surface of black pepper C-dots analysed by ESI-QTOF-MS.


2020 ◽  
Vol 295 (50) ◽  
pp. 17169-17186
Author(s):  
Mysore S. Veena ◽  
Santanu Raychaudhuri ◽  
Saroj K. Basak ◽  
Natarajan Venkatesan ◽  
Parameet Kumar ◽  
...  

We have observed overexpression of PACS-1, a cytosolic sorting protein in primary cervical tumors. Absence of exonic mutations and overexpression at the RNA level suggested a transcriptional and/or posttranscriptional regulation. University of California Santa Cruz genome browser analysis of PACS-1 micro RNAs (miR), revealed two 8-base target sequences at the 3′ terminus for hsa-miR-34a and hsa-miR-449a. Quantitative RT-PCR and Northern blotting studies showed reduced or loss of expression of the two microRNAs in cervical cancer cell lines and primary tumors, indicating dysregulation of these two microRNAs in cervical cancer. Loss of PACS-1 with siRNA or exogenous expression of hsa-miR-34a or hsa-miR-449a in HeLa and SiHa cervical cancer cell lines resulted in DNA damage response, S-phase cell cycle arrest, and reduction in cell growth. Furthermore, the siRNA studies showed that loss of PACS-1 expression was accompanied by increased nuclear γH2AX expression, Lys382-p53 acetylation, and genomic instability. PACS-1 re-expression through LNA-hsa-anti-miR-34a or -449a or through PACS-1 cDNA transfection led to the reversal of DNA damage response and restoration of cell growth. Release of cells post 24-h serum starvation showed PACS-1 nuclear localization at G1-S phase of the cell cycle. Our results therefore indicate that the loss of hsa-miR-34a and hsa-miR-449a expression in cervical cancer leads to overexpression of PACS-1 and suppression of DNA damage response, resulting in the development of chemo-resistant tumors.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4181-4181
Author(s):  
Lan Pham ◽  
Juan Chen ◽  
Archie Tamayo ◽  
Jerry Bryant ◽  
David Yang ◽  
...  

Abstract Non-Hodgkin Lymphoma (NHL) is the most common hematological malignancy, with B-cell lymphoma (NHL-B) accounting for 85% of all lymphomas. In the United States, there are ~500,000 lymphoma patients currently living with this disease and ~20,000 lymphoma-related deaths occur annually. The current overall cure rate for B-cell lymphoma is estimated at ~30%, indicating that new innovative therapeutic approaches are needed to significantly reduce the high mortality rate, particularly of relapsed/refractory (r/r) NHL-B. The poor quality of life in patients suffering from chronic diseases like cancer has forced many patients to pursue alternative treatment options, including medicinal cannabinoids (CB), in order to improve their clinical prospect/outcomes. Medicinal cannabinoids have been legalized in 23 states and DC for several medical conditions such as cachexia, chronic pain, epilepsy and other similar disorders characterized by seizures, glaucoma, HIV- AIDS, Multiple Sclerosis, muscle spasticity and GI enteritis. Lately however, cannabis has been shown to have a broader biologic activity spectrum with various cannabis compounds functioning as ligands binding the two principle cannabinoid-specific G protein-coupled receptors (GPCR) CB1 (in neural cells), and CB2, in immune lymphoid, particularly B cells, but have also been identified, showing aberrant expression in a wide variety of important human cancers. This suggests not only a wider spectrum of cellular usage of cannabinoids and their cognate receptors, but also their potential utility as novel therapeutic targets. Gene expression profiling data has demonstrated, however, that B-cell lymphoma is one of the top three cancers (glioma and gastric are the other two) showing high expression of CB1 and CB2 receptors. Our studies showed that CB1 receptor is highly expressed in aggressive NHL-B, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL) cells in comparison to normal unstimulated (G0) B cells, and that targeting CB1 using an siRNA approach leads to cell growth inhibition. Furthermore, pharmacological approaches targeting CB1 with small molecule antagonists (Rimonabant and Otenabant) inhibited lymphoma cell viability, leading to the induction of apoptosis and G2M cell cycle arrest. Using proteomic approach via reverse-phase protein array (RPPA), we have demonstrated that lymphoma cells treated with the CB1 antagonist Rimonabant showed a robust effect on apoptosis (increases in caspase 3 and 7, Bad, and bak), cell cycle (increases in p27 and cyclin D1), DNA damage (increases in gH2AX), and autophagy (increases in LC3A) associated proteins. In addition, Rimonabant treatment also inhibited several growth and survival pathways, including STAT3, SRC, and b-catenin, while enhancing the PI3K/ATK pathway. Of note, Rimonabant treatment also activated the DNA damage response (DDR) pathway through stimulating two checkpoint kinases (Chk1 and Chk2). Blocking Rimonabant-induced Chk1 and Chk2 with a selective ATP-competitive inhibitor of Chk1 and Chk2 leads to a robust synergistic effect on cell growth inhibition and apoptotic induction, suggesting that blocking the DDR pathway with Chk kinase inhibitors prevents cells recovering from rimonabant-induced DNA damage. These findings suggest that targeting the cannabinoid receptors and the DDR pathway represents a new therapeutic strategy against resistant r/r NHL-B cells. Disclosures Pham: Vyripharm Biopharmaceuticals: Research Funding. Bryant:Vyripharm Biopharmaceuticals: Equity Ownership. Yang:Vyripharm Biopharmaceuticals: Employment.


Sign in / Sign up

Export Citation Format

Share Document