scholarly journals Design and synthesis of a bis-macrocyclic host and guests as building blocks for small molecular knots

2020 ◽  
Vol 16 ◽  
pp. 2314-2321
Author(s):  
Elizabeth A Margolis ◽  
Rebecca J Keyes ◽  
Stephen D Lockey ◽  
Edward E Fenlon

The thread–link–cut (TLC) approach has previously shown promise as a novel method to synthesize molecular knots. The modular second-generation approach to small trefoil knots described herein involves electrostatic interactions between an electron-rich bis-macrocyclic host compound and electron-deficient guests in the threading step. The bis-macrocyclic host was synthesized in eight steps and 6.6% overall yield. Ammonium and pyridinium guests were synthesized in 4–5 steps. The TLC knot-forming sequence was carried out and produced a product with the expected molecular weight, but, unfortunately, further characterization did not produce conclusive results regarding the topology of the product.

Author(s):  
J Ph Guillet ◽  
E Pilon ◽  
Y Shimizu ◽  
M S Zidi

Abstract This article is the first of a series of three presenting an alternative method of computing the one-loop scalar integrals. This novel method enjoys a couple of interesting features as compared with the method closely following ’t Hooft and Veltman adopted previously. It directly proceeds in terms of the quantities driving algebraic reduction methods. It applies to the three-point functions and, in a similar way, to the four-point functions. It also extends to complex masses without much complication. Lastly, it extends to kinematics more general than that of the physical, e.g., collider processes relevant at one loop. This last feature may be useful when considering the application of this method beyond one loop using generalized one-loop integrals as building blocks.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1517
Author(s):  
Xinsheng Wang ◽  
Xiyue Wang

True random number generators (TRNGs) have been a research hotspot due to secure encryption algorithm requirements. Therefore, such circuits are necessary building blocks in state-of-the-art security controllers. In this paper, a TRNG based on random telegraph noise (RTN) with a controllable rate is proposed. A novel method of noise array circuits is presented, which consists of digital decoder circuits and RTN noise circuits. The frequency of generating random numbers is controlled by the speed of selecting different gating signals. The results of simulation show that the array circuits consist of 64 noise source circuits that can generate random numbers by a frequency from 1 kHz to 16 kHz.


1995 ◽  
Vol 98 (1) ◽  
pp. 483-490
Author(s):  
J. L. M. van Nunen ◽  
A. P. H. J. Schenning ◽  
R. J. H. Hafkamp ◽  
C. F. van Nostrum ◽  
M. C. Feiters ◽  
...  

2015 ◽  
Vol 112 (27) ◽  
pp. 8187-8192 ◽  
Author(s):  
Michael D. Hardy ◽  
Jun Yang ◽  
Jangir Selimkhanov ◽  
Christian M. Cole ◽  
Lev S. Tsimring ◽  
...  

Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks.


2008 ◽  
Vol 130 (6) ◽  
pp. 1833-1835 ◽  
Author(s):  
Farid Nouar ◽  
Jarrod F. Eubank ◽  
Till Bousquet ◽  
Lukasz Wojtas ◽  
Michael J. Zaworotko ◽  
...  

2020 ◽  
Vol 40 (9) ◽  
pp. 771-781
Author(s):  
Janne van Gisbergen ◽  
Jaap den Doelder

AbstractRecycling of thermoplastic polymers is an important element of sustainable circular economy practices. The quality of mechanically recycled polymers is a concern. A method is presented to predict the structure and processability of recycled blends of polymers based on processability knowledge of their virgin precursor components. Blending rules at molecular weight distribution level are well established and form the foundation of the new method. Two essential fundamental building blocks are combined with this foundation. First, component and blend structure are related to viscosity via tube theories. Second, viscosity is related to melt flow index via a continuum mechanics approach. Emulator equations are built based on virtual experimental designs for fast forward and reverse calculations directly relating structure to viscosity and processability. The new combined method is compared with empirical blend rules, and shows important similarities and also clear quantitative differences. Finally, the new method is applied to practical recycling quality challenges.


Gels ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 67 ◽  
Author(s):  
Pasquale Sacco ◽  
Franco Furlani ◽  
Gaia de Marzo ◽  
Eleonora Marsich ◽  
Sergio Paoletti ◽  
...  

Chitosan macro- and micro/nano-gels have gained increasing attention in recent years, especially in the biomedical field, given the well-documented low toxicity, degradability, and non-immunogenicity of this unique biopolymer. In this review we aim at recapitulating the recent gelling concepts for developing chitosan-based physical gels. Specifically, we describe how nowadays it is relatively simple to prepare networks endowed with different sizes and shapes simply by exploiting physical interactions, namely (i) hydrophobic effects and hydrogen bonds—mostly governed by chitosan chemical composition—and (ii) electrostatic interactions, mainly ensured by physical/chemical chitosan features, such as the degree of acetylation and molecular weight, and external parameters, such as pH and ionic strength. Particular emphasis is dedicated to potential applications of this set of materials, especially in tissue engineering and drug delivery sectors. Lastly, we report on chitosan derivatives and their ability to form gels. Additionally, we discuss the recent findings on a lactose-modified chitosan named Chitlac, which has proved to form attractive gels both at the macro- and at the nano-scale.


Sign in / Sign up

Export Citation Format

Share Document