Patterns of Aided Loudness Growth in Experienced Adult Listeners with Early-Onset Severe–Profound Hearing Loss

2018 ◽  
Vol 29 (06) ◽  
pp. 457-476 ◽  
Author(s):  
Linda Gottermeier ◽  
Carol De Filippo

AbstractIndividuals with early-onset severe–profound bilateral hearing loss (S/PHL) manifest diverse levels of benefit and satisfaction with hearing aids (HAs), even with prescriptive HA fitting. Such fittings incorporate normal loudness values, but little is known about aided loudness outcomes in this population and how those outcomes affect benefit or satisfaction.To describe aided loudness growth and satisfaction with aided listening in experienced adult HA users with S/PHL.The Contour Test of loudness perception was administered to listeners with S/PHL in the aided sound field using broadband speech, band-limited speech, and warble tones. Patterns and slopes of resultant loudness growth functions were referenced to sound field results from listeners with normal hearing (NH). S/PHL listeners also rated their aided listening satisfaction. It was expected that (1) most S/PHL listeners would demonstrate steeper than normal aided loudness growth, (2) loudness normalization would be associated with better high-frequency detection thresholds and speech recognition, and (3) closer approximation to normal would yield greater satisfaction.Participants were paid college-student volunteers: 23 with S/PHL, long-term aided listening experience, and new HAs; 15 with NH.Participants rated loudness on four ascending runs per stimulus (5-dB increments) using categories defined in 1997 by Cox and colleagues. The region between the 10th and 90th percentiles of the NH distribution constituted local norms against which location and slope of the S/PHL functions were examined over the range from Quiet to Loud-but-OK. S/PHL functions were categorized on the basis of their configurations (locations/slopes) relative to the norms.Pattern of aided loudness was normalized or within 5 dB of the normal region on 37% of trials with sufficient data for analysis. Only one of the 23 S/PHL listeners did not demonstrate Normal/Near-normal loudness on any trials. Four nonnormal patterns were identified: Steep (recruitment-like; 38% of trials); Shifted right, with normal growth rate (10%); Hypersensitive, with most intensities louder than normal (10%); and Shallow, with decreasing growth rate (7%). Listeners with high-frequency average thresholds above 100 dB hearing loss or no phonemic-based speech-discrimination skill were less likely to display normalized loudness. Slope was within norms for 52% of S/PHL trials, most also having a Normal/Near-normal growth pattern. Regardless of measured loudness results, all but four listeners with S/PHL reported satisfactory hearing almost always or most of the time with their HAs in designated priority need areas.The variety of aided loudness growth patterns identified reflects the diversity known to characterize individuals with early-onset S/PHL. Loudness rating at the validation stage of HA fit with these listeners is likely to reveal nonnormal loudness, signaling need for further HA adjustment. High satisfaction, however, despite nonnormal loudness growth, suggests that listeners with poor auditory speech recognition may benefit more from aided loudness that supports pattern perception (via the time-intensity waveform of speech), different from most current-day prescription fits.

1968 ◽  
Vol 11 (1) ◽  
pp. 204-218 ◽  
Author(s):  
Elizabeth Dodds ◽  
Earl Harford

Persons with a high frequency hearing loss are difficult cases for whom to find suitable amplification. We have experienced some success with this problem in our Hearing Clinics using a specially designed earmold with a hearing aid. Thirty-five cases with high frequency hearing losses were selected from our clinical files for analysis of test results using standard, vented, and open earpieces. A statistical analysis of test results revealed that PB scores in sound field, using an average conversational intensity level (70 dB SPL), were enhanced when utilizing any one of the three earmolds. This result was due undoubtedly to increased sensitivity provided by the hearing aid. Only the open earmold used with a CROS hearing aid resulted in a significant improvement in discrimination when compared with the group’s unaided PB score under earphones or when comparing inter-earmold scores. These findings suggest that the inclusion of the open earmold with a CROS aid in the audiologist’s armamentarium should increase his flexibility in selecting hearing aids for persons with a high frequency hearing loss.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Bei Li ◽  
Yang Guo ◽  
Guang Yang ◽  
Yanmei Feng ◽  
Shankai Yin

This study explored whether the time-compressed speech perception varied with the degree of hearing loss in high-frequency sensorineural hearing loss (HF SNHL) individuals. 65 HF SNHL individuals with different cutoff frequencies were recruited and further divided into mildly, moderately, and/or severely affected subgroups in terms of the averaged thresholds of all frequencies exhibiting hearing loss. Time-compressed speech recognition scores under both quiet and noisy conditions and gap detection thresholds within low frequencies that had normal thresholds were obtained from all patients and compared with data from 11 age-matched individuals with normal hearing threshold at all frequencies. Correlations of the time-compressed speech recognition scores with the extents of HF SNHL and with the 1 kHz gap detection thresholds were studied across all participants. We found that the time-compressed speech recognition scores were significantly affected by and correlated with the extents of HF SNHL. The time-compressed speech recognition scores also correlated with the 1 kHz gap detection thresholds except when the compression ratio of speech was 0.8 under quiet condition. Above all, the extents of HF SNHL were significantly correlated with the 1 kHz gap thresholds.


1987 ◽  
Vol 30 (3) ◽  
pp. 377-386 ◽  
Author(s):  
Dianne J. Van Tasell ◽  
Jeilry L. Yanz

Speech recognition threshold (SRT) was measured in quiet and in noise for normal-hearing subjects and subjects with high-frequency sensorineural hearing loss. For the hearing-impaired subjects, SRT in quiet approximated the amount of hearing loss in the frequency region of importance for each of two sets of speech materials—spondees and monosyllables. With changes in frequency response of the stimulus delivery system, SRT shifted differentially for spondees and monosyllables. The speed, reliability, and apparent sensitivity of the SRT in quiet and noise to frequency response characteristics make it a potentially useful tool for hearing aid evaluation if speech materials appropriate to both the hearing loss configuration and the frequency response of amplification are chosen.


2017 ◽  
Vol 28 (09) ◽  
pp. 823-837 ◽  
Author(s):  
Marc A. Brennan ◽  
Dawna Lewis ◽  
Ryan McCreery ◽  
Judy Kopun ◽  
Joshua M. Alexander

AbstractNonlinear frequency compression (NFC) can improve the audibility of high-frequency sounds by lowering them to a frequency where audibility is better; however, this lowering results in spectral distortion. Consequently, performance is a combination of the effects of increased access to high-frequency sounds and the detrimental effects of spectral distortion. Previous work has demonstrated positive benefits of NFC on speech recognition when NFC is set to improve audibility while minimizing distortion. However, the extent to which NFC impacts listening effort is not well understood, especially for children with sensorineural hearing loss (SNHL).To examine the impact of NFC on recognition and listening effort for speech in adults and children with SNHL.Within-subject, quasi-experimental study. Participants listened to amplified nonsense words that were (1) frequency-lowered using NFC, (2) low-pass filtered at 5 kHz to simulate the restricted bandwidth (RBW) of conventional hearing aid processing, or (3) low-pass filtered at 10 kHz to simulate extended bandwidth (EBW) amplification.Fourteen children (8–16 yr) and 14 adults (19–65 yr) with mild-to-severe SNHL.Participants listened to speech processed by a hearing aid simulator that amplified input signals to fit a prescriptive target fitting procedure.Participants were blinded to the type of processing. Participants' responses to each nonsense word were analyzed for accuracy and verbal-response time (VRT; listening effort). A multivariate analysis of variance and linear mixed model were used to determine the effect of hearing-aid signal processing on nonsense word recognition and VRT.Both children and adults identified the nonsense words and initial consonants better with EBW and NFC than with RBW. The type of processing did not affect the identification of the vowels or final consonants. There was no effect of age on recognition of the nonsense words, initial consonants, medial vowels, or final consonants. VRT did not change significantly with the type of processing or age.Both adults and children demonstrated improved speech recognition with access to the high-frequency sounds in speech. Listening effort as measured by VRT was not affected by access to high-frequency sounds.


2021 ◽  
Vol 6 (3) ◽  
pp. 21-24
Author(s):  
Evgeniya R. Tsygankova ◽  
Vladimir E. Gaufman ◽  
Irina E. Grebenyuk ◽  
Elena E. Saveleva ◽  
Evgenii S. Savelev

Objectives to improve the quality of hearing aids (HA) selection for patients with sensorineural hearing loss using a comparative free sound field speech audiometry according to our modified method "Delta Test". Material and methods. The study involved 56 patients aged from 18 to 62 years with bilateral chronic sensorineural hearing loss of 2-4 degrees. The study group included 32 patients, a test for speech recognition in a free sound field (speech audiometry) was conducted using the method proposed by us. The control group consisted of 24 patients who were aided without the use of comparative speech audiometry. The "Delta Test" included the use of audio files sets containing a speech material in pure form and mixed with speech noise with different signal-to-noise ratios, supplied through a speaker system connected to a personal computer. The percentage of correctly repeated words was measured without HA and with several HA having different settings. The effectiveness of using HA was defined as the difference in the percentage of speech recognition when using HA in relation to the "ear without HA". Results. According to "The International Outcome Inventory for Hearing Aids" the average score was 4.13 0.10 in the group where the HA were selected using the "Delta Test", which is statistically significantly higher than in the control group, where the average score was 3.720.15(p 0.05). "Delta Test" allows optimally select the HA parameters. This method is easy to perform and does not require expensive equipment.


Author(s):  
Nicole E. Corbin ◽  
Emily Buss ◽  
Lori J. Leibold

Purpose The purpose of this study was to characterize spatial hearing abilities of children with longstanding unilateral hearing loss (UHL). UHL was expected to negatively impact children's sound source localization and masked speech recognition, particularly when the target and masker were separated in space. Spatial release from masking (SRM) in the presence of a two-talker speech masker was expected to predict functional auditory performance as assessed by parent report. Method Participants were 5- to 14-year-olds with sensorineural or mixed UHL, age-matched children with normal hearing (NH), and adults with NH. Sound source localization was assessed on the horizontal plane (−90° to 90°), with noise that was either all-pass, low-pass, high-pass, or an unpredictable mixture. Speech recognition thresholds were measured in the sound field for sentences presented in two-talker speech or speech-shaped noise. Target speech was always presented from 0°; the masker was either colocated with the target or spatially separated at ±90°. Parents of children with UHL rated their children's functional auditory performance in everyday environments via questionnaire. Results Sound source localization was poorer for children with UHL than those with NH. Children with UHL also derived less SRM than those with NH, with increased masking for some conditions. Effects of UHL were larger in the two-talker than the noise masker, and SRM in two-talker speech increased with age for both groups of children. Children with UHL whose parents reported greater functional difficulties achieved less SRM when either masker was on the side of the better-hearing ear. Conclusions Children with UHL are clearly at a disadvantage compared with children with NH for both sound source localization and masked speech recognition with spatial separation. Parents' report of their children's real-world communication abilities suggests that spatial hearing plays an important role in outcomes for children with UHL.


Sign in / Sign up

Export Citation Format

Share Document