scholarly journals SOIL PROPERTIES AND NUTRIENT ELEMENT STATUS OF COCONUT LEAVES UNDER DEFFERENT CROPPING PATTERNS

CORD ◽  
1988 ◽  
Vol 4 (01) ◽  
pp. 34
Author(s):  
Doah Dekok Tarigans

This study was conducted to investigate the effects of six co­conut cropping patterns on the soil properties and nutrient element status of coconut leaves. The experiments were carried out from August 1984 to May 1985 in Silang, Cavite, Philippines. Data on‑soil properties and nutrient element starus of coconut leaves were statistically analyzed in Randomized Block Design with three replications. Six cropping patterns in coconut with four species of perennial crops as intercrops, namely: banana, papaya, coffee and pineapple were used in this study. The organic matter, pH and cation exchange capacity of the soils did not differ significantly with cropping pattern although intensively cropped farms tended to have higher organic matter' and cation exchange capacity values. Nitrogen, phosphorus and potassium in the top soil were significantly higher in most intensive intercropped farms, but calcium and magnesium did not vary significantly. Moisture content, waterholding capacity, bulk density and particle density of the soil did not show significant difference with cropping patterns. Likewise, the number of bacteria, fungi and actinomycetes in the soil remained statistically the same. Leaf nitrogen and calcium, in­creased while potassium decreased with intensity of cropping. Phosphorus and magnesium showed no definite trend.

2013 ◽  
Vol 27 (1) ◽  
pp. 57-67 ◽  
Author(s):  
S.E. Obalum ◽  
J. Oppong ◽  
C.A. Igwe ◽  
Y. Watanabe ◽  
M.E. Obi

Abstract The spatial variability of some physicochemical properties of topsoils/subsoils under secondary forest, grassland fallow, and bare-soil fallow of three locations was evaluated. The data were analyzed and described using classical statistical parameters. Based on the coefficient of variation, bulk density, total porosity, 60-cm-tension moisture content, and soil pH were of low variability. Coarse and fine sand were of moderate variability. Highly variable soil properties included silt, clay, macroporosity, saturated hydraulic conductivity, organic matter concentration, and cation exchange capacity. Overall, soil pH and silt varied the least and the most, respectively. Relative weighting showed that location dominantly influenced the soil variability, except for soil porosity and organic matter concentration influenced mostly by land use. Most of the soil data were normally distributed; others were positively skewed and/or kurtotic. The minimum number of samples (at 25 samples ha-1) required to estimate mean values of soil properties was highly soil property-specific, ranging from 1 (topsoil pH-H2O) to 246 (topsoil silt). Cation exchange capacity of subsoils related fairly strongly with cation exchange capacity of topsoils (R2 = 0.63). Spatial variability data can be used to extrapolate dynamic soil properties across a derived-savanna landscape.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 827-843 ◽  
Author(s):  
Sunday Adenrele Adeniyi ◽  
Willem Petrus de Clercq ◽  
Adriaan van Niekerk

Abstract. Cocoa agroecosystems are a major land-use type in the tropical rainforest belt of West Africa, reportedly associated with several ecological changes, including soil degradation. This study aims to develop a composite soil degradation assessment index (CSDI) for determining the degradation level of cocoa soils under smallholder agroecosystems of southwestern Nigeria. Plots where natural forests have been converted to cocoa agroecosystems of ages 1–10, 11–40, and 41–80 years, respectively representing young cocoa plantations (YCPs), mature cocoa plantations (MCPs), and senescent cocoa plantations (SCPs), were identified to represent the biological cycle of the cocoa tree. Soil samples were collected at a depth of 0 to 20 cm in each plot and analysed in terms of their physical, chemical, and biological properties. Factor analysis of soil data revealed four major interacting soil degradation processes: decline in soil nutrients, loss of soil organic matter, increase in soil acidity, and the breakdown of soil textural characteristics over time. These processes were represented by eight soil properties (extractable zinc, silt, soil organic matter (SOM), cation exchange capacity (CEC), available phosphorus, total porosity, pH, and clay content). These soil properties were subjected to forward stepwise discriminant analysis (STEPDA), and the result showed that four soil properties (extractable zinc, cation exchange capacity, SOM, and clay content) are the most useful in separating the studied soils into YCP, MCP, and SCP. In this way, we have sufficiently eliminated redundancy in the final selection of soil degradation indicators. Based on these four soil parameters, a CSDI was developed and used to classify selected cocoa soils into three different classes of degradation. The results revealed that 65 % of the selected cocoa farms are moderately degraded, while 18 % have a high degradation status. The numerical value of the CSDI as an objective index of soil degradation under cocoa agroecosystems was statistically validated. The results of this study reveal that soil management should promote activities that help to increase organic matter and reduce Zn deficiency over the cocoa growth cycle. Finally, the newly developed CSDI can provide an early warning of soil degradation processes and help farmers and extension officers to implement rehabilitation practices on degraded cocoa soils.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Alemayehu Adugna ◽  
Assefa Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent soil plots under different land uses, namely forestland, grazing land, and cultivated land at 0–15 cm depth. Changes in soil properties on cultivated and grazing land were computed and compared to forestland, and ANOVA (analysis of variance) was used to test the significance of the changes. Sand and silt proportions, soil organic content, total nitrogen content, acidity, cation exchange capacity, and exchangeable Ca2+ content were higher in forestlands. Exchangeable Mg2+ was highest in grazing land, while clay, available phosphorous, and exchangeable K+ were highest in cultivated land. The percentage changes in sand, clay, soil organic matter, cation exchange capacity, and exchangeable Ca2+ and Mg2+ were higher in cultivated land than in grazing land and forestland. In terms of the relation between soil properties, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable Ca2+ were strongly positively correlated with most of soil properties, while available phosphorous and silt have no significant relationship with any of the other considered soil properties. Clay has a negative correlation with all soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and available phosphorous, which suggests an increasing degradation rate in soils of cultivated land. So as to increase soil organic matter and other nutrients in the soil of cultivated land, the integrated implementation of land management through compost, cover crops, manures, minimum tillage, crop rotation, and liming to decrease soil acidity are suggested.


1992 ◽  
Vol 8 (3) ◽  
pp. 329-338 ◽  
Author(s):  
Augustine Onwuegbukiwe Isichei ◽  
Joseph Ikechukwu Muoghalu

ABSTRACTThe effect of tree canopy cover on soil properties was studied over three periods: middry season (January), mid-growth period (August) and peak-growth period (October) in three 1 ha plots in savanna of north-west Nigeria. The objective was to find out whether tree canopies change the nutrient status of the soil under them relative to adjacent grasslands. Soils under tree canopies were found to have significantly higher levels of organic matter, calcium, magnesium, potassium, total exchangeable bases, cation exchange capacity and pH than those in open grasslands. Nitrogen and phosphorus were slightly higher in soils under tree canopies than those in the open grasslands. Trees 7 m and above had more influence on soil properties than smaller trees. Differences in soil properties among the study plots were due to differences in their soil texture. Seasonal trends were observed in organic matter, carbon: nitrogen ratio, cation exchange capacity, phosphorus, calcium, sodium, total exchangeable cations and percentage base saturation.


2006 ◽  
Vol 86 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Edouard Lemire ◽  
Kate M Taillon ◽  
William H. Hendershot

Controlling soil pH is important to ensure good crop yield. This study was conducted to determine whether the accuracy of the existing Shoemaker-McLean-Pratt (SMP) pH-buffer method could be improved by using the pH-dependent cation exchange capacity curve (CECpd). Soil pH, SMP and CECpd measurements were performed on 18 acid surface horizon soil samples, with textures from sandy loam to clay loam. These soils were incubated with three levels of calcium carbonate for 12 wk, after which the soil pH and the effective cation exchange capacity (CECe) were measured. The correlation coefficient (R2) for the CECpd and CECe curves was 0.96. The main factor affecting the slope of the curves is the soil organic matter content. The increase of CECe in the soil was also found to be directly proportional to the amount of lime applied, regardless of the type of soil. By using the slope of the Qv versus pH curve for each soil and the relationship between CECe and lime application, we were able to determine the lime required to raise the soil pH in water to 6.5. As an alternative to the current practice of using the SMP buffer, we propose that it should be possible to estimate the pH-dependent CEC curve from measurable soil properties (e.g., organic matter) and to estimate the lime requirement as the difference in CECpd between the existing and desired pH values. Once the slope of the Qv/pH relationship has been determined or estimated for a soil, the only measurement necessary for calculating lime requirement in subsequent years would be the soil pH. The proposed method would provide lime requirement estimates while decreasing the annual cost of soil analysis. Key words: Lime requirement, cation exchange capacity, Non-Ideal Competitive Adsorption, soil properties, organic matter, Fe oxides


1969 ◽  
Vol 53 (4) ◽  
pp. 369-373
Author(s):  
M. A. Lugo-López ◽  
Raúl Pérez-Escolar

A study is herein reported where attempts to explain the variability in the cation exchange capacity of Lajas Valley soils in terms of other soil properties were made. The independent variables considered were percentage of particles smaller than 0.002 mm., percentage of organic matter, and the summation of the percentage of particles ranging from 0.05 to 0.002 mm. and smaller than 0.002 mm. The correlation coefficients obtained were 0.44, 0.47 and 0.46 for each respective attempt. Only 19 percent of the variability in cation exchange capacity could be explained on the basis of the percentage of particles smaller than 0.002 mm. in size. Another simple correlation where the percentage of particles between 0.05 mm. and 0.002 mm. was added to the percentage of particles smaller than 0.002 failed to explain satisfactorily any significant additional variability. A multiple correlation including the percentage of organic matter, in addition to the percentage of particles smaller than 0.002 mm. also failed to explain any significant additional variability. This failure is analyzed in view of the different nature of montmorillonitic clays that predominate in Lajas Valley soils.


KIMIKA ◽  
2016 ◽  
Vol 27 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Amstrong Calinawan ◽  
Concepcion S. Mendoza ◽  
Leonila Adarna

Pesticides pose a threat to the environment and eventually human health. Extent of contamination of pesticides can be determined and monitored by analysis of pesticide residue in surface water, sediments, soil, and biota. Samples were collected from Manlapay, Barangay Mantalongon in Dalaguete, reportedly the vegetable basket of Cebu, from October to November 2013. Concentration of the pesticide deltamethrin was determined by Gas Chromatography-Electron Capture Detector along with organic matter content (OM), potassium (K) and cation exchange capacity (CEC) using standard methods of analysis. Data showed that deltamethrin was found to be present in soil and cabbage and beyond detection limit in water. Inverse relationship was found between residue in cabbage and in soil confirming pesticide leaching as supported by rainfall data. Organic matter and cation exchange capacity in soil showed significant correlation to detected deltamethrin residue confirming that pyrethroids are strongly bound to organic matter and free exchangeable potassium ions. Deltamethrin residue in water does not show any correlation to any other parameters as it is beyond detection limit, probably due to volatilization and photodegradation of deltamethrin in water. Temperature variation does not show significant difference to deltamethrin residue in all three matrices. The detected deltamethrin residue concentrations in the cabbage (<0.001-0.029 ppm), soil samples (0.007-0.008 ppm) and water samples (<0.0005 ppm) were all below international guideline limits (ASEAN maximum level of 0.5 ppm deltamethrin in cabbage, EC ecologically accepted concentration of 1290 mg deltamethrin/kg soil, and a maximum limit of 0.0025 ppm deltamethrin according to Canadian water quality, respectively). Inspite of the low concentrations detected in cabbage, soil and water samples, an extensive pesticide monitoring on environmental samples within the area is advisable.  This will help the adoption of an efficient risk assessment strategy to inform appropriate interventions.


1971 ◽  
Vol 51 (1) ◽  
pp. 105-111 ◽  
Author(s):  
J. A. McKEAGUE ◽  
J. H. DAY ◽  
J. A. SHIELDS

Data for 16 measured and seven calculated properties of 461 samples from 115 soils occurring in various parts of Canada were coded, and a correlation analysis was run on the data for various groups of samples. In general, correlations of color value and organic matter were moderately high (|r| > 0.5) and significant, but for 21 Podzol Ae horizons the correlation was very low (r = −0.13) and not significant. Chroma and dithionite Fe were significantly correlated for several groups of samples but not for Podzolic B (spodic) horizons or Bm horizons. Linear regression equations expressing cation exchange capacity and pH-dependent charge as functions of organic matter and other variables fitted the data reasonably well. The danger of generalizing from presumed relationships among soil properties was indicated but, for some groups of samples, useful relationships existed between visible soil properties and properties measured in the laboratory.


Author(s):  
Geraldo R. Zuba Junio ◽  
Regynaldo A. Sampaio ◽  
Altina L. Nascimento ◽  
Luiz A. Fernandes ◽  
Natália N. de Lima ◽  
...  

ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L.), variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca) and magnesium (Mg) silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1) and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis). Soil organic matter (OM), pH, sum of bases (SB), effective cation exchange capacity (CEC(t)), total cation exchange capacity (CEC(T)), base saturation (V%) and potential acidity (H + Al) were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Nenad Tomašić ◽  
Štefica Kampić ◽  
Iva Cindrić ◽  
Kristina Pikelj ◽  
Mavro Lučić ◽  
...  

AbstractThe adsorption properties in terms of cation exchange capacity and their relation to the soil and sediment constituents (clay minerals, Fe-, Mn-, and Al-oxyhydroxides, organic matter) were investigated in loess, soil-loess transition zone, and soil at four loess-soil sections in North-Western Croatia. Cation exchange capacity of the bulk samples, the samples after oxalate extraction of Fe, Mn and Al, and after removal of organic matter, as well as of the separated clay fraction, was determined using copper ethylenediamine. Cation exchange capacity (pH∼7) of the bulk samples ranges from 5 to 12 cmolc/kg in soil, from 7 to 15 cmolc/kg in the soil-loess transition zone, and from 12 to 20 cmolc/kg in loess. Generally, CEC values increase with depth. Oxalate extraction of Fe, Mn, and Al, and removal of organic matter cause a CEC decrease of 3–38% and 8–55%, respectively, proving a considerable influence of these constituents to the bulk CEC values. In the separated clay fraction (<2 μm) CEC values are up to several times higher relative to those in the bulk samples. The measured CEC values of the bulk samples generally correspond to the clay mineral content identified. Also, a slight increase in muscovite/illite content with depth and the vermiculite occurrence in the loess horizon are concomitant with the CEC increase in deeper horizons, irrespective of the sample pretreatment.


Sign in / Sign up

Export Citation Format

Share Document