Effect of Heat Input on Microstructure and Properties of Microalloyed C-Mn Steel Full Penetration Welded Joint Using Laser Welding

2016 ◽  
Vol 43 (1) ◽  
pp. 0103003
Author(s):  
王海生 Wang Haisheng ◽  
王晓南 Wang Xiaonan ◽  
张敏 Zhang Min ◽  
王卫 Wang Wei ◽  
朱国辉 Zhu Guohui ◽  
...  
2016 ◽  
Vol 61 (1) ◽  
pp. 93-102 ◽  
Author(s):  
A. Lisiecki

The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7498
Author(s):  
Abdel-Monem El-Batahgy ◽  
Olga Klimova-Korsmik ◽  
Aleksandr Akhmetov ◽  
Gleb Turichin

The results disclosed that both the microstructure and mechanical properties of AA7075-T6 laser welds are considerably influenced by the heat input. In comparison with high heat input (arc welding), a smaller weld fusion zone with a finer dendrite arm spacing, limited loss of alloying elements, less intergranular segregation, and reduced residual tensile stress was obtained using low heat input. This resulted in a lower tendency of porosity and hot cracking, which improved the welded metal’s soundness. Subsequently, higher hardness as well as higher tensile strength for the welded joint was obtained with lower heat input. A welded joint with better mechanical properties and less mechanical discrepancy is important for better productivity. The implemented high-power fiber laser has enabled the production of a low heat input welded joint using a high welding speed, which is of considerable importance for minimizing not only the fusion zone size but also the deterioration of its properties. In other words, high-power fiber laser welding is a viable solution for recovering the mechanical properties of the high-strength AA 7075-T6 welds. These results are encouraging to build upon for further improvement of the mechanical properties to be comparable with the base metal.


2015 ◽  
Vol 42 (2) ◽  
pp. 0203005 ◽  
Author(s):  
刘腊腊 Liu Lala ◽  
胡绳荪 Hu Shengsun ◽  
申俊琦 Shen Junqi ◽  
马立 Ma Li ◽  
魏鑫 Wei Xin

2011 ◽  
Vol 314-316 ◽  
pp. 949-952
Author(s):  
Hong Jian Xiu ◽  
Jun Liu ◽  
Jun Hui Dong ◽  
Ping Xu

The microstructure, the regular and mechanism of various parameters on formation of weld bead of Mg alloy AMCa403 using a laser welding were investigated. The results show that sound welds without major defects can be produced. Two welding modes of deep penetration welding, heat conduction welding were found, and heat input was found to be the main factor for welding mode and shape. The microstructure of weld metal is significantly finer than the base metal. At the same power, with the increase of welding speed, the microstructure of weld metal is much finer.


2020 ◽  
Vol 2020 (12) ◽  
pp. 13-17
Author(s):  
Nikolay Proskuryakov ◽  
Uliana Putilova ◽  
Rasul Mamadaliev ◽  
Oleg Teploukhov

The comparative investigation results of AD33 aluminum alloy welded joint quality dependence upon changes in a laser beam motion rate for conditions of hand and automatic laser welding are shown. A micro-structure of a welded joint at the hand and automatic laser welding of the AD33 alloy is investigated.


2020 ◽  
Vol 326 ◽  
pp. 08005
Author(s):  
Mete Demirorer ◽  
Wojciech Suder ◽  
Supriyo Ganguly ◽  
Simon Hogg ◽  
Hassam Naeem

An innovative process design, to avoid thermal degradation during autogenous fusion welding of high strength AA 2024-T4 alloy, based on laser beam welding, is being developed. A series of instrumented laser welds in 2 mm thick AA 2024-T4 alloys were made with different processing conditions resulting in different thermal profiles and cooling rates. The welds were examined under SEM, TEM and LOM, and subjected to micro-hardness examination. This allowed us to understand the influence of cooling rate, peak temperature, and thermal cycle on the growth of precipitates, and related degradation in the weld and heat affected area, evident as softening. Although laser beam welding allows significant reduction of heat input, and higher cooling rates, as compared to other high heat input welding processes, this was found insufficient to completely supress coarsening of precipitate in HAZ. To understand the required range of thermal cycles, additional dilatometry tests were carried out using the same base material to understand the time-temperature relationship of precipitate formation. The results were used to design a novel laser welding process with enhanced cooling, such as with copper backing bar and cryogenic cooling.


2017 ◽  
Vol 750 ◽  
pp. 45-52
Author(s):  
Sveto Cvetkovski

The heat input during conventional arc welding processes can be readily calculated knowing the power taken from the power source. The efficiency coefficient can be taken from the appropriate literature standards. Here, the intention of the performed research work was to develop a procedure for determination of heat input in arc and laser welding processes implementing Adams equation - modified Rykalin equation for two dimensional heat distributions (2-D). To realize this idea, it is necessary to determine two characteristic temperatures points in the HAZ with known peak temperature, and to determine distance between them. Implementing measured values for distance in Adams’ equation, heat input in arc welding can be directly determined in arc welded joints.In laser beam welding, the absorption of the beam in the metal is not known, so that the welding heat input cannot be calculated directly, and direct implementation of Adam’s equation is not possible i.e. absorption coefficient has to be determined first, and after that calculation of heat input is possible.The peak temperatures corresponding to specific microstructures can be obtained by performing welding simulation, by the Gleeble 1500 simulator in our case. As one of the peak temperatures, the melting temperature can be used corresponding to the fusion line, so that at least one characteristic peak temperature such as coarse grain zone, fine grin zone, intercritical zone, recrystallization, has to be determined by the simulation.Performed research showed that obtained values for heat input using Adam’s equation correspond pretty well with standard equation for heat input in arc welding.


Sign in / Sign up

Export Citation Format

Share Document