scholarly journals Studies on nanocomposites nanoplates and pervoskite nanorod thin films

YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 303-313
Author(s):  
M M Patil ◽  
◽  
K. P Joshi ◽  
S.B Patil ◽  
◽  
...  

Nano crystalline nickel oxide thin films of different film thickness were deposited onto glass substrate at 350 oC by varying volume of precursor solution using spray pyrolysis technique. This structural, morphological and microstructure properties were investigated using XRD, FE-SEM and TEM. The element composition was studied using EDAX. It is found that increase in the volume of sprayed solution leads to the increment in film thickness and amelioration of crystallinity of the film. The results are discussed and interpreted.

2018 ◽  
Vol 17 (03) ◽  
pp. 1760037 ◽  
Author(s):  
A. Nancy Anna Anasthasiya ◽  
K. Gowtham ◽  
R. Shruthi ◽  
R. Pandeeswari ◽  
B. G. Jeyaprakash

The spray pyrolysis technique was employed to deposit V2O5 thin films on a glass substrate. By varying the precursor solution volume from 10[Formula: see text]mL to 50[Formula: see text]mL in steps of 10[Formula: see text]mL, films of various thicknesses were prepared. Orthorhombic polycrystalline V2O5 films were inferred from the XRD pattern irrespective of precursor solution volume. The micro-Raman studies suggested that annealed V2O5 thin film has good crystallinity. The effect of precursor solution volume on morphological and optical properties were analysed and reported.


Author(s):  
Nadir Fadhil Habubi ◽  
Sami Salman Chiad ◽  
Khalid Haneen Abass ◽  
Mahmood Muwafaq Abood

Nickel oxide doped Fe2O3thin films have been prepared by spray pyrolysis technique on glass substrate. The initial solution was including a 0.1 M/L for both NiCl2and FeCl3diluted with redistilled water and a few drops of HCl. The effect of annealing temperature on optical properties was studied, using UV-Visible spectrophotometer to determine absorption spectra at a thickness of 400 nm. The reflectance increased with increasing annealing temperature, such as α, k, and n.While the transmittance decreases with increasing annealing temperature and the energy gap decreased from 2.68 eV before annealing to 2.70 eV after 500°C annealing temperature.


2018 ◽  
Vol 4 (5) ◽  
pp. 542-545 ◽  
Author(s):  
R. Shabu ◽  
A. Moses Ezhil Raj

As major attention has been paid to transition metal oxide semiconductor suitable for solar cell, photo detector and gas sensor, present study embark on the structural, optical and electrical characterization of Ag doped CuO thin films prepared using chemical spray pyrolysis technique at the constant substrate temperature of 350 �C. For Ag doping, various concentrations of silver acetate (0.5-3.0 wt.%) was used in the sprayed precursor solution. Confirmed monoclinic lattice shows the tenorite phase formation of CuO in the pure and Ag doped films. The optical band gap of the films was in the range of 2.4 -3.4 eV. A minimum resistivity of 0.0017x103 ohmcm was achieved in the 0.5 wt.% Ag doped film, and its optical band gap was 2.74 eV.


2009 ◽  
Vol 293 ◽  
pp. 99-105 ◽  
Author(s):  
Girjesh Singh ◽  
S.B. Shrivastava ◽  
Deepti Jain ◽  
Swati Pandya ◽  
V. Ganesan

During the last two decades, the use of transparent conducting films of non-stoichiometric and doped metallic oxides for the conversion of solar energy into electrical energy has assumed great significance. A variety of materials, using various deposition techniques, has been tried for this purpose [1-3]. Among these various materials, zinc oxide (ZnO) is one of the prominent oxide semiconductors suitable for photovoltaic applications because of its high electrical conductivity and optical transmittance in the visible region of the solar spectrum [4]. Furthermore, thin films of ZnO have shown good chemical stability against hydrogen plasma, which is of prime importance in a-Si:H-based solar-cell fabrication. Thus, zinc oxide can serve as a good candidate for replacing SnO2 and indium tin oxide (ITO) films in Si:H-based solar cells. One of the outstanding features of ZnO is its large excitonic binding energy, i.e. 60meV, leading to the existence of excitons at room temperature and even at higher temperatures [5-8]. These unique characteristics have generated a wide range of applications of ZnO. For example, gas sensors [9], surface acoustic devices [10], transparent electrodes and solar cells. Many techniques are used for preparing the transparent conducting ZnO films, such as RF sputtering [11], evaporation [12], chemical vapour deposition [13], ion beam sputtering [14] and spray pyrolysis [15–18]. Among these, the spray pyrolysis technique has attracted considerable attention due to its simplicity and large-scale production combined with low-cost fabrication. By using this technique, one can produce large-area coatings without any need for ultra-high vacuum. Thus, the capital cost and the production cost of high-quality zinc oxide semiconductor thin films are lowest among all other techniques. In the present work, we have synthesized ZnO films by using the spray pyrolysis technique. A number of films have been prepared by changing the molarity of the precursor solution. The prepared films have been characterized with regard to their structural, morphological and electrical properties.


2020 ◽  
Author(s):  
Shereen Alshomar

Abstract In this study, nanocrystalline TiO 2 : Eu 3+ thin films are successfully formed by spray pyrolysis technique deposited on glass substrate. Optical, electrical, structure, surface morphology, and photocatalytic degradation of Methylene blue have been examined. The optical properties of the films are analyzed using transmittance and reflectance spectra, which are measured using UV-Vis-NIR double-beam spectrophotometer. Optical properties such as refractive index (n), extinction coefficient (k), optical conductivity (σ) and Urbach energy (E u ) have been calculated as a function of Eu 3+ concentration. Film thickness were evaluated using the refractive index dependence on wavelength . The films thickness were determined as 97.13, 122.62, 123.24, 117.14 and 128.25 nm, respectively, for Eu doped TiO 2 at 0,4, 6, 8 and 10 wt % doping concentration. The band gap values raised from 3.29 to 3.42 eV with increasing the Eu 3+ dopant concentration. The highest electrical conductivity was found to be 3.01x10 -2 (Ω.cm) -1 at high doping level with 10 wt% Eu 3+ . The XRD analysis illustrate the tetragonal crystal structure of films with anatase phase and reduces crystallite size linearly with increasing Eu 3+ concentration. Scanning electron microscopy (SEM) analysis indicated consistent allocation of irregular and spherical shaped grains covering the substrate surface. The average grain size in range of 82.5 – 51.1 nm is observed and films show porous nature. The photocatalytic effect of TiO 2 : Eu 3+ thin films is predicted from the degradation of methylene blue (MB) at room temperature under UV light irradiation. An enhancement in photocatalytic degradation observed by increasing the amount of Eu 3+ due to increase in the e/h pair production and increase of film thickness. These results make TiO 2 : Eu 3+ thin films as attractive candidate for photovoltaic cells and other optoelectronic device applications


2019 ◽  
Vol 397 ◽  
pp. 81-87 ◽  
Author(s):  
Farid Khediri ◽  
Abdelkader Hafdallah ◽  
Mouna Bouhelal

In this work Zinc oxide thin films prepared by spray pyrolysis technique. A set of ZnO thin films were deposited with various deposition times, on glass substrate at 350 °C. The precursor solution is formed with zinc acetate in distilled methanol with 0.1 molarity. The deposition time was ranged from 2 to 8 min. The structural and optical properties of those films were examined by X-ray diffraction (XRD) and ultraviolet-visible spectrometer (UV). X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane when the grain size varied between 9.66 and 16.67nm. ZnO thin films were highly transparent in the visible with the maximum transmittance of 85% and the optical band gap was found between 3.25 and 3.28 eV.


Sign in / Sign up

Export Citation Format

Share Document