scholarly journals Morphological Characteristics and Wear Mechanism of Recycled Carbon Fibre Prepreg reinforced Polypropylene Composites

2021 ◽  
Vol 5 (1) ◽  
pp. 1-10
Author(s):  
Noraiham Mohamad ◽  
Anisah Abd Latiff ◽  
Jeefferie Abd Razak ◽  
Hairul Effendy Ab Maulod ◽  
Pay Jun Liew ◽  
...  

The polypropylene (PP) reinforced with recycled carbon fibres (rCF) was successfully produced using a Haake internal mixer via melt compounding. The compounding was performed at 180°C, rotor speed of 50 rpm and compounding period of 10 minutes. The standard samples for the pin on disc testing were prepared using injection moulding. The effect of rCF filler loadings of 0.5, 1, 3, 5, 7, 10, 13, 15 and 20 wt% was studied for the tribological properties. The results were compared with 100% PP. The morphological behaviours for the effect of low and high fibre loadings were observed using scanning electron microscopy analyses. The composites with low carbon fibre loading of up to 3 wt% imposed higher resistance to dry sliding friction. In contrast, the increment of fibre loading at 5 wt% to 20 wt% decreased the wear rate of the composites due to patch film and transfer film formation. The wear mechanism of the composites for different fibre loading was graphically sketched from morphological observation. As the conclusions, the composites showed promising self-lubricating properties, capable of wear reduction with significant physical and mechanical properties.

1999 ◽  
Vol 122 (1) ◽  
pp. 141-145 ◽  
Author(s):  
M. Chiarelli ◽  
A. Lanciotti ◽  
M. Sacchi

The paper describes the results of a research programme, carried out at the Department of Aerospace Engineering of the University of Pisa, for the assessment of the influence of plasma cutting on the physical and mechanical properties of Fe510 D1, a low carbon steel widely used in carpentry. The activity started by observing that several industries rework plasma cut edges, particularly in the case of fatigue structures, in spite of the good quality of the plasma cut edges in a fully automatic process. Obviously, reworking is very expensive and time-consuming. Comparative fatigue tests demonstrated that the fatigue resistance of plasma cut specimens in Fe510 steel was fully comparable to that of milled specimens, as the consequence of the beneficial residual stresses which formed in the plasma cut edges. [S0094-4289(00)02201-5]


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 843-843 ◽  
Author(s):  
N.-H. Lu ◽  
Q.-Z. Huang ◽  
H. He ◽  
K.-W. Li ◽  
Y.-B. Zhang

Avicennia marina is a pioneer species of mangroves, a woody plant community that periodically emerges in the intertidal zone of estuarine regions in tropical and subtropical regions. In February 2013, a new disease that caused the stems of A. marina to blacken and die was found in Techeng Island of Zhanjiang, Guangdong Province, China. Initial symptoms of the disease were water-soaked brown spots on the biennial stems that coalesced so whole stems browned, twigs and branches withered, leaves defoliated, and finally trees died. This disease has the potential to threaten the ecology of the local A. marina community. From February to May 2013, 11 symptomatic trees were collected in three locations on the island and the pathogen was isolated as followed: tissues were surface disinfected with 75% ethanol solution (v/v) for 20 s, soaked in 0.1% mercuric chloride solution for 45 s, rinsed with sterilized water three times, dried, placed on potato dextrose agar (PDA), and incubated for 3 to 5 days at 28°C without light. Five isolates (KW1 to KW5) with different morphological characteristics were obtained, and pathogenic tests were done according Koch's postulates. Fresh wounds were made with a sterile needle on healthy biennial stems of A. marina, and mycelial plugs of each isolate were applied and covered with a piece of wet cotton to maintain moisture. All treated plants were incubated at room temperature. Similar symptoms of black stem were observed only on the stems inoculated the isolate KW5 after 35 days, while the control and all stems inoculated with the other isolates remained symptomless. An isolate similar to KW5 was re-isolated from the affected materials. The pathogenic test was repeated three times with the same conditions and it was confirmed that KW5 was the pathogen causing the black stem of A. marina. Hyphal tips of KW5 were transferred to PDA medium in petri dishes for morphological observation. After 48 to 72 h, white, orange, or brown flocculence patches of KW5 mycelium, 5.0 to 6.0 cm in diameter, grew. Tapering and spindle falciform macroconidia (11 to 17.3 μm long × 1.5 to 2.5 μm wide) with an obviously swelled central cell and narrow strips of apical cells and distinctive foot cells were visible under the optical microscope. The conidiogenous cells were intertwined with mycelia and the chlamydospores were globose and formed in clusters. These morphological characteristics of the isolate KW5 are characteristic of Fusarium equiseti (1). For molecular identification, the ITS of ribosomal DNA, β-tubulin, and EF-1α genes were amplified using the ITS4/ITS5 (5), T1/T2 (2), and EF1/EF2 (3) primer pairs. These sequences were deposited in GenBank (KF515650 for the ITS region; KF747330 for β-tubulin region, and KF747331 for EF-1α region) and showed 98 to 99% identity to F. equiseti strains (HQ332532 for ITS region, JX241676 for β-tubulin gene, and GQ505666 for EF-1α region). According to both morphological and sequences analysis, the pathogen of the black stem of A. marina was identified as F. equiseti. Similar symptoms on absorbing rootlets and trunks of A. marina had been reported in central coastal Queensland, but the pathogen was identified as Phytophthora sp. (4). Therefore, the disease reported in this paper differs from that reported in central coastal Queensland. To our knowledge, this is the first report of black stems of A. marina caused by F. equiseti in China. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, 1st ed. Wiley-Blackwell, Hoboken, NJ, 2006. (2) K. O'Donnell and E. Cigelnik. Mol. Phylogenet. Evol. 7:103, 1997. (3) K. O'Donnell et al. Proc. Natl. Acad. Sci. USA. 95:2044, 1998. (4) K. G. Pegg. Aust et al. Plant Pathol. 3:6, 1980. (5) A. W. Zhang et al. Plant Dis. 81:1143, 1997.


2021 ◽  
Vol 20 (7) ◽  
pp. 135-143
Author(s):  
Oleg A. Mitko ◽  
Sergey G. Skobelev

Purpose. The article is devoted to the characteristics of a double-edged iron sword, which can be attributed to the unique phenomena of the early Iron Age of the Minusinsk Basin. Results. According to its morphological characteristics, the sword is an increased technological modification of the traditional Tagar dagger. The total length of the sword is 59.5 cm; the width of the lenticular blade in cross-section is about 7 cm. The handle with a volute-like pommel is separated from the blade by a narrow butterfly-shaped crosshair. The length of the hilt is 8 cm, which corresponds to the size of the hilts of most Scythian swords. This is a very small size, since in men the average palm width is about 12 cm. Probably, the rounded outlines of the pommel and narrow crosshairs allow, due to their shape, to hold the short handle of a heavy sword more tightly. Conclusion. According to the classification of O. I. Kura, Scythian swords with a narrow butterfly-shaped crosshair and volute-like pommel are included in Group III, Type II A2 dating from the end of the 5th – 4th centuries BC, which corresponds to the boundary between the Podgorny and Saragashen stages of the Tagar culture. The earliest form of sword hilts with typologically similar forms of crosshairs (kidney-shaped, heart-shaped, butterfly-shaped) with bar-shaped pommels appeared in the North Caucasus in the first half of the 7th century BC. On the territory of the Minusinsk Basin, most morphologically similar daggers are usually dated to the 6th – 4th centuries BC. Before the discovery of the Krasnoyarsk sword, long-bladed iron weapons were not known there. At the same time, swords of the Scythian time were found in the nearest regions of Altai and Kazakhstan. The later appearance of the technology for processing iron in the Minusinsk Basin makes it possible to consider the Krasnoyarsk sword an import item. According to another hypothesis, it belongs to the period of the late 3rd – 2nd centuries BC, when local craftsmen mastered the processing of iron and began to make massive quantities of weapons and tools from low-carbon steel. In doing so, they copied traditional archaic forms.


2021 ◽  
Vol 912 (1) ◽  
pp. 012103
Author(s):  
Elimasni ◽  
R A Nasution

Abstract Abstrak. Loquat (Eriobotrya japonica Lindl.) is a flowering plant that belongs to the Rosacea family. The loquat has many health benefits. Cultivation and information about loquat plants in Indonesia are still limited, so they are rarely found and known by the public. Limited information and data regarding loquat plants is also an obstacle to the development of loquat plants. Research on loquat plants aims to analyze the morphological characters in three districts, namely, Karo, Dairi, and Simalungun districts. This research was conducted using a descriptive method. The analysis of the morphological characteristics of loquat plants using morphological data scoring into binary data. The similarity between individuals was analyzed using clusters with the NTSYS program version 2.0 with the UPGMA method of the SimQual function. Morphological Observation Results Loquat plants (Eriobotrya japonica Lindl.) in Karo, Dairi, and Simalungun Districts have uniform characters in the morphology of stems, leaves, and flowers. However, the observed fruit and seed morphology showed different characters. Different characters exist in the shape of the fruit and seeds. The morphological similarity level of loquat plants was grouped at a similarity coefficient value of 95%. Clusters I and II have the highest similarity with a coefficient value of 100%. Cluster III has the lowest similarity with a coefficient value of 97%.


2018 ◽  
Vol 770 ◽  
pp. 189-194
Author(s):  
Dong Guo Lin ◽  
Jae Man Park ◽  
Tae Gon Kang ◽  
Seong Taek Chung ◽  
Young Sam Kwon ◽  
...  

In this work, powder injection molding (PIM) of Ti-6Al-4V alloy powder has been studied. Defect-free high performance Ti-6Al-4V parts with low carbon/oxygen contents have been successfully prepared by PIM. A pre-alloyed Ti-6Al-4V alloy powder and wax-polymer binder system have been mixed together to prepare the feedstock. In mixing stage, the solid loading percentage and mixing conditions have been optimized. Rheological and thermal debinding behaviors of prepared feedstock have been characterized and numerically expressed based on rheometry and thermal gravity experimental results. In addition, the injection molding process of Ti-6Al-4V parts has been numerically analyzed to optimize the injection molding conditions. Consequently, the defect-free Ti-6Al-4V parts with low carbon and oxygen contents have been successfully fabricated by PIM, which exhibits excellent physical and mechanical properties.


Author(s):  
Elchyn Aliiev ◽  
◽  
Christina Lupko ◽  

To create a database and systematize the seeds of samples of small-seeded crops, it is necessary to determine the patterns of influence of morphological parameters on their physical and mechanical properties. The development of the latest technologies and technical devices for cleaning and separation is possible due to the understanding of the characteristic morphological parameters for each of the small-seeded crops. The aim of the research is to determine the physical and mechanical properties of the seed material of small-seeded crops (mustard, flax, ryegrass, rapeseed), necessary to increase the efficiency of their cleaning and separation processes. To achieve this goal, a plan of experimental research was developed, which provided for the determination of physical and mechanical parameters of seeds of small-seeded crops, namely: indicators that characterize the flowability of seeds (angle of natural bias); frictional properties of seeds (static coefficient of friction); porosity (density) and density; size and mass characteristics of seeds (length, width, thickness, effective diameter, weight of 1000 seeds). It is established that the physical and mechanical properties of seeds of small-seeded crops are greatly influenced by its humidity. With increasing humidity, the performance of the test material increases. This is due to the fact that with increasing humidity, the shape of the seed almost turns into a spherical, which, in turn, leads to an increase in the curvature of the surface and reduce the points of contact between the seeds. As a result, the angle of natural inclination increases. The coefficient of friction of seeds of small-seeded crops depends on the roughness of the friction surface and decreases with increasing humidity. This is due to the fact that with increasing humidity decreases the forces of molecular attraction of the seed coat to the surface of the material. Seed density increases with increasing humidity. From this we can conclude that the absorption of moisture by the investigated material increases the total weight of the seed, and as a result - increases its specific weight.


2012 ◽  
Vol 476-478 ◽  
pp. 566-569
Author(s):  
Bao Guo Yuan ◽  
Hai Ping Yu ◽  
Ping Li ◽  
Gui Hua Xu ◽  
Chun Feng Li ◽  
...  

The effects of hydrogen on friction and wear properties of Ti–6Al–4V alloy sliding against GCr15 steel were investigated through dry sliding friction and wear tests in atmosphere at room temperature. Wear mechanism was determined by studying the morphology and chemical element of worn surface using SEM and EDS. Results show that friction coefficient decreases slightly and wear rate increases after hydrogenation. Wear mechanism is discussed.


Sign in / Sign up

Export Citation Format

Share Document