scholarly journals Natural Polymers as Excipients for Formulation Development

2009 ◽  
Vol 77 (1) ◽  
pp. 231-231 ◽  
Author(s):  
Stummer
2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
G. Vox ◽  
G. Santagata ◽  
M. Malinconico ◽  
B. Immirzi ◽  
G. Scarascia Mugnozza ◽  
...  

The use of plastic mulching films in horticulture causes the serious drawback of huge amount of wastes to be disposed of at the end of their lifetime. Several pre-competitive research products based on raw materials coming from renewable sources were recently developed to be used as biodegradable materials for soil mulching. Biodegradable materials are designed in order both to retain their mechanical and physical properties during their using time and to degrade at the end of their lifetime. These materials can be integrated directly in the soil in order to biodegrade because the bacterial flora transforms them in carbon dioxide or methane, water and biomass. The innovative materials can be obtained using natural polymers, such as starch, cellulose, chitosan, alginate and glucomannan. Biodegradable extruded mulching films were performed by means of thermo-plasticizing process. Spray mulch coatings were realized directly in field, by spraying water solutions based on natural polysaccharides, thus covering the cultivated soil with a protective thin geo-membrane. In this paper an overview on the formulation development, processing understanding, field performance, mechanical and radiometric properties of these innovative materials for soil mulching is presented. In field the biodegradable mulching films showed suitable mechanical properties if compared to the low density polyethylene films. The radiometric properties and their effect on the temperature condition and on weed control in the mulched soil were evaluated too. At the end of their lifetime the biodegradable materials were shattered and buried into the soil together with plants.


Author(s):  
Shambhavi Pandala ◽  
Vasudha Bakshi ◽  
Rajendra Kumar Jadi

Background: Zolmitriptan is an artificial tryptamine, employed for the acute cure of migraine attack with or exclusive of aura and cluster headaches. Objective: It is an attempt to develop the extended release (ER) of Zolmitriptan matrix (ZMT) tablets to treat migraine safely and effectively. Methods: All formulations were prepared with natural polymers or gums like guar gum, xanthan gum, karaya gum through direct compression method using 6mm punch. Results: Powder blend of all formulations (F1 - F12) using different ratios of the above mentioned gums (5%, 10%, 15% and 20%) were characterized with pre-compression parameters (angle of repose, bulk density, tapped density, compressibility index, hausner ratio, compatibility studies) and post-compression parameters (weight variation, thickness, friability, hardness, assay, in vitro dissolution studies). F1 - F4 formulations were prepared with gum karaya and compared with remaining gums; gum karaya shows more retardance capacity. F9 - F12 (with guar gum) formulations were unable to produce the desired release, whereas F5 - F8 formulations containing with xanthan gum exhibited more retarding effect with increasing concentration of polymer. Conclusion: All prepared formulations (F1 - F12) were characterized and F3 formulation was optimized (97.3% drug released in 8 hours). All prepared formulations (F1 - F12) showed good flow properties and release patterns. Hence, formulations of ZMT matrix tablets have a promising delivery system which will enhance bio-availability and achieve greater therapeutic efficacy.


2021 ◽  
Vol 11 (5-S) ◽  
pp. 108-112
Author(s):  
, Sonam ◽  
Nilesh Jain ◽  
Jitendra Banveer

The goal of this study is to develop a long-acting Lansoprazole delivery system. Lansoprazole belongs to a class of antisecretory drugs known as substituted benzimidazoles, which decrease gastric acid secretion by inhibiting the (H+,K+)-ATPase enzyme system at the secretory membrane of the stomach parietal cell. Due to its mechanism of action, despite its short half-life of 1-5 hours, it can effectively block acid secretion for 24 hours. However, as his plasma concentration falls, the effect will diminish. Lansoprazole will be given as a sustained release tablet to avoid multiple dosing or to reduce the frequency of dose. Lansoprazole was produced and analysed utilizing natural and synthetic polymers such as Xanthan gum, Gellan gum, Carbopol 940 P, and Chitosan. Based on the findings of this experiment, it was determined that formulation F7 demonstrated sustained drug release for up to 12 hours in all developed formulations. Formulation (F1, F2, F3, F4, F5, and F6) were tested in vitro for drug release. For the improved formulation F7, the formulation and release kinetics were estimated. When the regression coefficient values of were evaluated, it was found that Peppas had the highest ‘r2' value, 0.952, indicating that drug release from formulations followed Peppas release kinetics. Key words: Lansoprazole, Sustain release tablets, Synthetic and Natural Polymers, formulation, evaluation


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2783
Author(s):  
Kei-Xian Tan ◽  
Ling-Ling Evelyn Ng ◽  
Say Chye Joachim Loo

In recent years, curcumin has been a major research endeavor in food and biopharmaceutical industries owing to its miscellaneous health benefits. There is an increasing amount of research ongoing in the development of an ideal curcumin delivery system to resolve its limitations and further enhance its solubility, bioavailability and bioactivity. The emergence of food-graded materials and natural polymers has elicited new research interests into enhanced pharmaceutical delivery due to their unique properties as delivery carriers. The current study is to develop a natural and food-graded drug carrier with food-derived MCT oil and a seaweed-extracted polymer called k-carrageenan for oral delivery of curcumin with improved solubility, high gastric resistance, and high encapsulation of curcumin. The application of k-carrageenan as a structuring agent that gelatinizes o/w emulsion is rarely reported and there is so far no MCT-KC system established for the delivery of hydrophobic/lipophilic molecules. This article reports the synthesis and a series of in vitro bio-physicochemical studies to examine the performance of CUR-MCT-KC as an oral delivery system. The solubility of CUR was increased significantly using MCT with a good encapsulation efficiency of 73.98 ± 1.57% and a loading capacity of 1.32 ± 0.03 mg CUR/mL MCT. CUR was successfully loaded in MCT-KC, which was confirmed using FTIR and SEM with good storage and thermal stability. Dissolution study indicated that the solubility of CUR was enhanced two-fold using heated MCT oil as compared to naked or unformulated CUR. In vitro release study revealed that encapsulated CUR was protected from premature burst under simulated gastric environment and released drastically in simulated intestinal condition. The CUR release was active at intestinal pH with the cumulative release of >90% CUR after 5 h incubation, which is the desired outcome for CUR absorption under human intestinal conditions. A similar release profile was also obtained when CUR was replaced with beta-carotene molecules. Hence, the reported findings demonstrate the potencies of MCT-KC as a promising delivery carrier for hydrophobic candidates such as CUR.


Author(s):  
Pawan Avhad ◽  
Revathi Gupta

The sustained-release dosage form is a well-characterized and reproducible dosage form that is designed to control drug release profile at a certain rate to reach desired drug concentration in blood plasma or at the target site. There is immense demand in the market for new sustained-release formulations used for new drug molecules which release the drug at a sustained rate. Doxofylline is one of the widely useful drugs in the market and needs to be given in a single dose for a long duration of time. For the same, we have prepared a sustained released Doxofylline tablet. Aim: This research was done to design, formulate and evaluate Doxofylline sustained-release tablets by using different concentrations of Chitosan and Guar Gum.  Methods: The factorial design was used to prepare Doxofylline sustained-release tablet. Doxofylline sustained-release tablets were prepared to employ different concentrations of Chitosan, Guar Gum, Lactose, and Magnesium Stearate in different combinations by wet granulation technique. Total 9 formulations were designed, formulated, and evaluated for the hardness, thickness, friability, % drug content, and in-vitro drug release. Results: A study of the release of drug by in-vitro found that F8 is to be the best efficient formulation which consists of both Chitosan and Guar Gum helped in delayed the release of drug up to 24 hours and performs excellent release of drug in starting hours of drug release in the body. The drug released from the F8 formulation indicates the kinetic model of First Order, by anomalous diffusion. The formulation F8 shows optimum thickness, hardness and at 40ºC±2 99.35% drug release after 24 hours shows optimum formulation.  Conclusion: This study concludes that better drug release was observed by using natural polymers.  Doxofylline with natural polymer shows good release and better dissolution rate as compared with a single synthetic polymer. Synthetic drug with natural polymer shows more future scope and this work will help the researcher in the future.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Khaled M. Hosny ◽  
Hala M. Alkhalidi ◽  
Waleed S. Alharbi ◽  
Shadab Md ◽  
Amal M. Sindi ◽  
...  

Natural polymers are revolutionizing current pharmaceutical dosage forms design as excipient and gained huge importance because of significant influence in formulation development and drug delivery. Oral health refers to the health of the teeth, gums, and the entire oral-facial system that allows us to smile, speak, and chew. Since years, biopolymers stand out due to their biocompatibility, biodegradability, low toxicity, and stability. Polysaccharides such as cellulose and their derivatives possess properties like novel mechanical robustness and hydrophilicity that can be easily fabricated into controlled-release dosage forms. Cellulose attracts the dosage design attention because of constant drug release rate from the precursor nanoparticles. This review discusses the origin, extraction, preparation of cellulose derivatives and their use in formulation development of nanoparticles having multidisciplinary applications as pharmaceutical excipient and in drug delivery, as bacterial and plant cellulose have great potential for application in the biomedical area, including dentistry, protein and peptide delivery, colorectal cancer treatment, and in 3D printable dosage forms.


Sign in / Sign up

Export Citation Format

Share Document