Modeling electro-magneto-hydrodynamic of blood flow in multi-stenosed artery using fractional deivatives without singular kernel

Author(s):  
F. J. Dzuliana ◽  
Uddin Salah ◽  
Roslan Rozaini ◽  
Md Akhir Mohd Kamalrulzaman

Stenosis is one of the most common problems in blood flow through arteries. Stenosis means narrowing arteries. Among the various cardiovascular diseases, stenosis is a major one that affects blood flow in the arteries and becomes the leading cause of death worldwide. Therefore, several studies were conducted either experimentally or mathematically to understand stenosis effects on blood flow through arteries. This study investigates the Newtonian fluid’s electro-magneto-hydrodynamic flow mixed with uniformly distributed magnetic particles through a multi-stenosed artery. The fluid is acted by an arbitrary timedependent pressure gradient, external electric and magnetic fields, and the porous medium. The governing equations are considered as fractional partial differential equations based on the Caputo–Fabrizio time-fractional derivatives without singular kernel. The fractional model of blood flow in the multi-stenosed artery will be presented subject to several external factors. These include the severity of the stenosis and the magnetic particles with the presence of an electromagnetic field. The steady and unsteady parts of the pressure gradient that give rise to the systolic and diastolic pressures are considered as the pumping action of the heart, which in turn produces a pressure gradient throughout the human circulatory system. The fractionaloperator’s effect and pertinent system parameters on blood flow axial velocities are presented and discussed for future works.

Author(s):  
Dzuliana Fatin Jamil ◽  
Salah Uddin ◽  
Muhamad Ghazali Kamardan ◽  
Rozaini Roslan

This paper investigates the magnetic blood flow in an inclined multi-stenosed artery under the influence of a uniformly distributed magnetic field and an oscillating pressure gradient. The blood is modelled using the non-Newtonian Casson fluid model. The governing fractional differential equations are expressed by using the fractional Caputo-Fabrizio derivative without singular kernel. Exact analytical solutions are obtained by using the Laplace and finite Hankel transforms for both velocities. The velocities of blood flow and magnetic particles are graphically presented. It shows that the velocity increases with respect to the Reynolds number and the Casson parameter. Meanwhile, the velocity decreases as the Hartmann number increases. These results are useful for the diagnosis and treatment of certain medical problems.


2015 ◽  
Vol 08 (03) ◽  
pp. 1550028 ◽  
Author(s):  
Mukesh Kumar Sharma ◽  
P. R. Sharma ◽  
Vinay Nasha

The study of pulsatile blood flow through axisymmetric stenosed artery subject to an axial translation has been attempted with hematocrit concentration-dependent blood viscosity. The heart contraction and subsequent relaxation generate periodic pressure gradient in blood flow and translation in the artery can be represented by Fourier series. Numerical data required for computing Fourier harmonics for the pressure gradient and acceleration in the artery has been simulated from pressure waveform graph and biplanar angiogram. Velocity field has been obtained by solving governing equation using variational Ritz method. The hemodynamic indicators WSS, AWSS, OSI, RRT are derived and computed numerically. The effects of thickness of stenosis, and hematocrit concentration index on these indicators are computed and analyzed through graphs.


2014 ◽  
Vol 11 (4) ◽  
pp. 185-195 ◽  
Author(s):  
G. C. Shit ◽  
M. Roy ◽  
A. Sinha

This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.


2021 ◽  
Vol 17 (4) ◽  
pp. 457-474
Author(s):  
Siti Nurul Aifa Mohd Zainul Abidin ◽  
Nurul Aini Jaafar ◽  
Zuhaila Ismail

A non-Newtonian mathematical model of blood described as a Hershel-Bulkley fluid model flowing in a stenosed artery with the effect of a chemical reaction is mathematically studied. The expressions of the shear stress, mean velocity and absolute velocity in the plug and non-plug flow field are evaluated analytically. The convective-diffusion equation is solved using the Taylor-Aris technique subject to the relevant boundary constraint in determining the concentration, relative and effective axial diffusivity. The efficiency of the dispersion process is affected by the presence of chemical reaction and stenosis in blood flow. The normalized velocity decreases as stenosis height and stenosis length increase. The relative axial diffusivity is significantly lower while the effective axial diffusivity decreases considerably as the chemical reaction rate, the height of the stenosis and the length of the stenosis increase. Besides, it is observed that as the solute disperses in the presence of stenosis, the flow quantities are lesser than in the absence of stenosis. Further, this study helps in understanding many physiological processes for instance dispersion of drugs or nutrients in the circulatory system. Also, to enhance the dispersion of a solute in blood flow through narrow arteries in the presence of chemical reaction and stenosis.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Vol 203 ◽  
pp. 106044
Author(s):  
Dzuliana Fatin Jamil ◽  
S. Saleem ◽  
Rozaini Roslan ◽  
Fahad S. Al-Mubaddel ◽  
Mohammad Rahimi-Gorji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document