scholarly journals Regularities of the formation and features of the influence of a fine structure on the properties of a new-generation magnesium alloy

Author(s):  
E. F. Volkova ◽  
V. A. Duyunova ◽  
I. V. Mostyaev ◽  
M. V. Akinina

An approach to creating high-strength deformable magnesium alloys for developing a fine-grained structure and a favourable phase composition is considered. The possibility of a noticeable improvement in the characteristics of magnesium alloys by introducing REEs in certain ratios for the formation of long-period phases (LPSO phases) is considered. The regularities of formation and features of the influence of a fine structure on the properties of a new-generation magnesium alloy of the VMD16 brand are studied.

2007 ◽  
Vol 561-565 ◽  
pp. 905-908
Author(s):  
Tatsuya Morikawa ◽  
Daisuke Kinoshita ◽  
Yoshihito Kawamura ◽  
Kenji Higashida

Microstructures developed by warm extrusion for Mg97Zn1Y2 alloy including long-period stacking order (LPSO) phase have been investigated using SEM and TEM. The extruded magnesium alloy with LPSO phase exhibits high strength and sufficient ductility. Such superior mechanical properties appear by warm extrusion around the temperature of 623K. The microstructure of the extruded alloy consists of matrix of fine-grained hcp phase and elongated grains with fine-lamellae including LPSO phase. The grain size of hcp matrix was about 1μm, indicating that remarkable grain refinement was occurred by extrusion since the grain size of as-cast alloy was about 500μm. Special attention has been paid on the enrichment of solutes at stacking faults and grain boundaries in the fine-grained matrix, which would contribute not only to the strengthening but also to the stability of fine-grained structure because of its role of an inhibiter against grain coarsening.


2013 ◽  
Vol 58 (1) ◽  
pp. 127-132 ◽  
Author(s):  
B. Płonka ◽  
M. Lech-Grega ◽  
K. Remsak ◽  
P. Korczak ◽  
A. Kłyszewski

The object of this study was to develop parameter of the die forging process, such as feedstock temperature and to investigate her impact on the structure and mechanical properties of magnesium alloys in different heat treatment conditions. Tests were carried out on a 2,5MN maximum capacity vertical hydraulic press using forgings of sample (model) shapes. Then, based on the results obtained in previous work, research was carried out to develop for items forged from magnesium alloys the parameters of heat treatment to the T5 and T6 condition in the context of achieving possibly homogeneous and fine-grained structure and, consequently, high mechanical properties.


2007 ◽  
pp. 905-908
Author(s):  
Tatsuya Morikawa ◽  
Daisuke Kinoshita ◽  
Yoshihito Kawamura ◽  
Kenji Higashida

2008 ◽  
Vol 49 (6) ◽  
pp. 1294-1297 ◽  
Author(s):  
Tatsuya Morikawa ◽  
Kenji Kaneko ◽  
Kenji Higashida ◽  
Daisuke Kinoshita ◽  
Masanori Takenaka ◽  
...  

2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


2015 ◽  
Vol 1085 ◽  
pp. 312-315
Author(s):  
Oleg L. Khasanov ◽  
Edgar S. Dvilis ◽  
Zulfa G. Bikbaeva ◽  
Valentina V. Polisadova ◽  
Alexey O. Khasanov ◽  
...  

Ceramics samples in the form of a parallelepiped with high strength characteristics have been made. For the manufacture of the ceramics samples a powder mixture from submicron В4С powder with additives (1 wt%, 5 wt%, 10 wt%) of boron carbide nanopowder was used. The physical properties of the powder mixtures and strength properties of sintered ceramics have been studied. It was shown that the use of submicron fractions of the boron carbide powder together with nanoadditives is a determining factor in the formation of dense fine-grained structure providing improved physical and mechanical properties of the ceramics.


2007 ◽  
Vol 567-568 ◽  
pp. 385-388 ◽  
Author(s):  
P. Pérez ◽  
S. González ◽  
G. Garcés ◽  
G. Caruana ◽  
P. Adeva

The microstructural and mechanical characterization of two alloys within the Mg-Ni-YRE system prepared by casting and subsequent hot extrusion at 400°C have been carried out. The microstructure of both materials consists of a fine-grained magnesium matrix embedding a high volume fraction of second phases; coarse Mg12RE and long period ordered stacking structure (LPS phase) and fine Mg2Ni particles. Both alloys show high strength values up to 250°C. The yield stress values at room temperature are 295 and 405 MPa for low- and high-alloyed magnesium alloy, respectively. Load transfer from the magnesium matrix to coarse Mg12RE and LPS particles account for the high strength of both alloys at temperatures below 250°C. Above this temperature both alloys exhibit a superplastic behaviour at low stresses with elongations of 700 and 450 % for the low and high-alloyed magnesium alloy, respectively.


Sign in / Sign up

Export Citation Format

Share Document