scholarly journals Deposits and possibilities of using thermal waters in Debrc

2005 ◽  
Vol 85 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Mirjana Gajic ◽  
Snezana Vujadinovic

The geothermal waters in Debrc are in karstified Triassic limestone and dolomite. Maximal measured temperature is 58?C on the depth of 1000 m. By using geothermal energy from thermal waters of Debrc, is possible intensive agri and aqva culture production, especially organic food according to world ecologic standards, as well as toplification of Debrc.

2009 ◽  
Vol 89 (3) ◽  
pp. 115-134 ◽  
Author(s):  
Mirjana Gajic ◽  
Snezana Vujadinovic

According to its characteristics the deposit of thermal waters in Macva is of world significance. The reservoir consists of the karstified Triassic limestone and dolomites where the water temperature of about 100?C is expected. These phenomena were registered in Dubalj, Bogatic, Macvanski Pricinovic, Belotic, Metkovic and Klenj. There are real prerequisites for Macva to become 'the hydro-geothermal region' with intensive exploitation of water. Present assessment shows that geothermal energy from thermal waters, exploited near Bogatic, could utilized in intensive agri and aqva cultural production of whole Macva, especially organic food according to restri word ecologic standards, as well as heating of Bogatic, Sabac, Loznica and Sremska Mitrovica. .


2021 ◽  
pp. 27-37
Author(s):  
V.A. Stennikov ◽  
S. Batmunkh ◽  
P.A. Sokolov

The paper addresses methodological and technological issues of building environmentally friendly and efficient energy supply based on geothermal energy sources. Geothermal potential in the world, accentuating that in Russia (areas of the Baikal natural territory) and Mongolia, is analyzed considering the possibility of its implementation in the thermal power industry. Geothermal areas of Central Mongolia are characterized by increased heat flows and occurrences of thermal waters. The most promising thermal spring occurrences are the Shivert, Shargalzhuut, Tsenkher, Otgontenger, and Khuzhirt, to name some of them. Currently, the thermal energy potential of the Khangai arched uplift in Central Mongolia is employed to heat industrial, agricultural, and civil facilities. There are also plans to consider the possibility of large-scale employment of thermal waters of the region for electricity generation. An example of using geothermal waters for electricity generation is given, and the possibility of establishing a heating system in the city of Tsetserleg based on a geothermal heat pump unit with a wind power plant is assessed.


2018 ◽  
Vol 4 (7) ◽  
Author(s):  
Andrijana Stevanović ◽  
Boban Jolović

One of the most used renewable energy sources worldwide is geothermal energy. Itrepresents the heat, originated by natural processes happen in the Earth interior. The hot springsphenomena are the most frequent natural manifestation of geothermal activity.Geothermal potentiality of some area can be estimated based on geothermal gradient. Geothermalgradient is a conductive terrestrial parameter that represents the degree of increasing of the Earthtemperature vs. depth. It is usually expressed in ⁰C/m or ⁰C/km. Different areas have differentthermal gradients and thus different geothermal potential. Generally, higher geothermal gradientscorrespond to areas containing more geothermal energy.Geothermal characteristics of the territory of the Republic of Srpska are closely related to itscomplex geological setting. It is the reason why geothermal characteristics are different from areato area. Higher geothermal potentiality is recognised in the northern parts of the entity, in the firstorder in Semberija, Posavina and Banja Luka regions.The use of geothermal energy with different fluid temperatures can be considered throughthe Lindaldiagram, who firstly proposed acomprehensive scale with appropriate temperatures for differentuses. High temperature fluids are mostly used for electricity production and moderate and lowtemperature fluids for the direct use.Despite the fact that the territory of the Republic of Srpska hasfavourable geothermal properties, utilization of this kind of renewable energy resource isinadequate. Especially indicative are data about the use of geothermal energy by heat pumps (inbad sense) in comparison with praxis of developed countries.Chemical composition of thermal waters plays very important role and can be used in itsexploration stage, for analyses of possibility of its use and for prediction of exploitation effects, aswell. This kind of renewable energyresource, highly ecologically recommended, must be consideredmore seriously in the future in the Republic of Srpska. Furthermore, it must be put into the energystrategic documentsin appropriate manner.


2020 ◽  
Author(s):  
Alin-Marius Nicula ◽  
Artur Ionescu ◽  
Cristian-Ioan Pop ◽  
Carmen Roba ◽  
Walter D’Alessandro ◽  
...  

<p><strong>Geochemical features of the geothermal and mineral waters from Apuseni Mountains, Romania</strong></p><p>Alin-Marius Nicula<sup>1</sup>, Artur Ionescu<sup>1,2</sup>, Cristian-Ioan Pop<sup>1</sup>, Carmen Roba<sup>1</sup>, Walter D’Alessandro<sup>3</sup>, Ferenc Lazar Forray<sup>4</sup>, Iancu Oraseanu<sup>5</sup>, Calin Baciu<sup>1</sup></p><p><sup> </sup></p><p><sup>1</sup>Babes-Bolyai University, Faculty of Environmental Science and Engineering, Str. Fantanele nr. 30, 400294, Cluj-Napoca, Romania ([email protected])</p><p><sup>2</sup>University of Perugia, Department of Physics and Geology, Via A. Pascoli 06123, Perugia, Italy</p><p><sup>3</sup>Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo la Malfa, 153,</p><p>90146 Palermo, Italy</p><p><sup>4</sup>Department of Geology, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania</p><p><sup>5</sup>Romanian Association of Hydrogeologists, Bucuresti, Romania</p><p> </p><p>The Apuseni Mountains are located in the western part of Romania and separate the Pannonian Basin from the Transylvanian Basin. These mountains are famous and intensely studied for their important non-ferrous metal resources. Few data were published about the geothermal potential of this area. More works have been dedicated to mineral waters, while the geothermal waters are only briefly described, without sufficient emphasis on them. The current research is focusing on the two categories, cold mineral and geothermal water in the Apuseni Mountains, compared to the surrounding areas, in order to better understand their genesis and the general context of the geothermalism in the study region. A preliminary survey of these waters was done in 2019 taking water and gas samples from 41 sources.</p><p>The pH varies between 6.00 and 9.02 and, the lowest values have been measured in the CO<sub>2</sub>-rich waters of the Southern Apuseni Mountains. Water temperatures vary between 11.1 <sup>â—‹</sup>C and 81 <sup>â—‹</sup>C. In the southern part of the Apuseni Mountains, the geothermal waters are of the calcium bicarbonate type (Ca-HCO<sub>3</sub>), while in the north-western part, the sodium bicarbonate type (Na-HCO<sub>3</sub>) is more common. The water sources from the north-western part are close to the Pannonian Basin and show features comparable to the thermal waters of this basin. Conductivity values show significant variations between 142 and 2040 µS/cm, but regional homogeneities were observed. The highest concentration of bicarbonate was measured in one of the localities of the northern study area (BeiuÅŸ Depression - 3318.4 mg/L). The dissolved heavy metal concentrations (Zn, Pb, Cd, Cr, Ni, Cu, Fe) in the water samples were also measured. For all the investigated waters, the heavy metal content was low. The highest concentrations were recorded for Fe 342.90 µg/L and Zn 86.14 µg/L. The isotopic data (δ<sup>18</sup>O and δ<sup>2</sup>H) demonstrate the meteoric origin of the thermal waters.</p><p>Some springs and wells release free gases. The gas chromatographic analyses show the prevalence of N<sub>2</sub> and CO<sub>2</sub>, with minor amounts of CH<sub>4 </sub>in the water sources close to the Pannonian Basin. The isotope composition of Helium shows values between 0.9 and 2.18 R/Ra indicating a prevailing crustal source with a significant mantle component. In the case of δ<sup>13</sup>C-CO<sub>2</sub> the values range between -12.7 and -6.1 ‰ vs.V-PDB, indicating that the CO<sub>2</sub> originates possibly from a limestone source.</p>


Clay Minerals ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 281-315 ◽  
Author(s):  
Ö. I. Ece ◽  
P. A. Schroeder ◽  
M. J. Smilley ◽  
J. M. Wampler

AbstractThe Biga Peninsula of NW Turkey is host to six major halloysite deposits in the Go¨nen, Yenice and Balya districts. Mineralization took place in areas of Permian limestone blocks where the Triassic Karakaya Complex is in contact with early Miocene calc-alkaline volcanic rocks. Hypogene halloysite mineralization was controlled by the intersection of minor faults in the vicinity of clay deposits. During the Pleistocene, activity of the North Anatolian Fault (NAF) brought ascending geothermal solutions through the fault zones to the surface, which led to hydrothermal alteration and halloysite formation. N-MORB normalized element values for each halloysite deposit and the volcanic rocks suggest genetic links. Alunite and halloysite were formed in the Turplu area where upwelling hydrothermal waters contained major H2S and SO2acids. Only halloysite mineralization occurred in outflow areas of the same fossil geothermal field.Pyrite and alunite samples from the Turplu deposits have δ34S values of 0.6–1.8% and 4.8–7.9%, respectively, with values for gypsum of 3.1–3.5%. The δ34S values of pyrite suggest that local meteoric waters had partially mixed with the dominant fluid during the closure stage of fossil hydrothermal activities. The range of δD values of halloysite samples from Turplu is –58.4 to –68.6%. The δ18O values for halloysite are in the range 16.7–18.1%. All halloysite deposits in the study areas are either overlying or adjacent to limestone blocks, and these provide excellent drainage for the discharging geothermal waters. Subsurface drainage systems in the karstic environment and the SO2-bearing thermal waters indicate the importance of acidic waters and the continuous leaching of elements in forming relatively pure hydrated halloysite. A steam-heated dissolution-precipitation model is proposed for the occurrence of all halloysite and alunite deposits. Sulphur gases (H2S-SO2) of hypogene origin rose from deep in the fault zone to the surface where they encountered oxygenated groundwater at the water table. The occurrence of H2SO4in this hydrothermal system enhanced the acidity of geothermal waters provoking advanced argillic alteration. Hypogene alunite deposits also have large P2O5contents, suggesting a parent material with a magmatic origin deeper than the alkaline tuffs. Halloysite is a fast-forming metastable precursor to kaolinite.


2021 ◽  
Author(s):  
Tanja Petrović Pantić ◽  
Katarina Atanasković Samolov ◽  
Jana Štrbački ◽  
Milan Tomić

Abstract In order to collect and unify data about all geothermal resources in Serbia, a database is formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 objects (springs, boreholes) registered at 160 locations with groundwater temperature in the range between 20°C and 111°C. The maximum expected temperature of the reservoir is 146°C (according to the SiO2 geothermometer). Some thermal water is cooled while mixed with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and technical water. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly registrated in the area of Tertiary magmatism. The three geothermal potential areas are identified: Pannonian basin-Vojvodina Province, Mačva-Srem and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer: karst, karst-fissured, intergranular or fissured.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Xiao Wang ◽  
Guoping Lu ◽  
Bill X. Hu

Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.


1982 ◽  
Vol 19 (7) ◽  
pp. 1454-1473 ◽  
Author(s):  
I. D. Clark ◽  
P. Fritz ◽  
F. A. Michel ◽  
J. G. Souther

A survey of stable and radioactive environmental isotopes has been carried out in order to investigate the recharge, thermal history, age, and geothermometry of the thermal waters at Mount Meager, British Columbia, a Quaternary volcano that is currently the site of active exploration for geothermal resources. Isotope determinations include 18O, 2H, and 3H in precipitation, thermal and cold groundwaters, and glacier ice; 13C and 14C in dissolved inorganic carbon; 18O and 34S in dissolved sulphate from thermal and cold groundwaters; and 13C and 18O in hydrothermal calcite crystals. Major ion analyses were performed on thermal and cold spring waters.Precipitation data are used to define the local meteoric water line and to document the altitude effect on waters recharging the geothermal system, demonstrating that there are two hydrogeologically separate reservoirs recharged at different altitudes. Both pools of geothermal waters have experienced shifts of between +0.5 and +2.5‰ in δ18O values, indicating a limited degree of 18O exchange with hot silicate minerals.Tritium contents indicate that these waters recharged prior to 1955. 13C contents of dissolved inorganic carbon and hydrothermal calcites from drill core document contamination of the thermal waters with "dead" volcanogenic CO2 plus carbon exchange with fracture calcite, which precludes the possibility of "dating" the thermal waters using 14C.Several chemical and isotopic geothermometers are used to estimate the maximum temperatures experienced by the thermal waters. The fractionation of 18O between SO42− and H2O in these waters gives calculated maximum temperatures of less than 140 °C. The Mg-corrected Na–K–Ca geothermometer shows excellent correlation with the SO4–H2O estimates with maximum temperatures of less than 140 °C. Fractionation of 13C and 18O in the systems CaCO3–CO2 and CaCO3–H2O using hydrothermal calcites and borehole fluids also offers no indications of subsurface temperatures in excess of 140 °C. Silica geothermometer results are not reliable because of equlibrium with amorphous silica phases in the subsurface.It is concluded that these thermal waters are not deeply circulating and have not experienced temperatures in excess of 140 °C.


2018 ◽  
Vol 40 (3) ◽  
pp. 1162
Author(s):  
Ch. Kougoulis ◽  
A. Arvanitis ◽  
N. Kolios ◽  
S. Koutsinos ◽  
J. S. Kougoulis

The Sani-Afytos area in the Kassandra Peninsula (Chalkidiki) was the area of systematic geothermal exploration. Based on deep oil borehole data, the Paleogene, Neogene and Quaternary sediments show significant thickness reaching 3600 m and cover the metamorphosed Mesozoic, mainly carbonate, basement. The detailed water temperature investigation proved the presence of sub-thermal waters (20-28°C) at depths up to 300 m and the spatial distribution of the isothermal curves at depths of 150 and 200 m according to the main NW-SE and SE-NW tectonic structures of the area. Through the construction of geothermal exploration and production wells at depths of 422-583 m, thermal waters of 31.7-36°C were detected within the Upper Miocene sediments. The average value of the geothermal gradient was calculated to be 3-4°CI 100 m. One production well of 520 m depth provides waters of 34°C while its potential flow rate is approximately 50 m /h. The geothermal waters were classified in Na-HCOi and Na-CI types of waters with TD. S 0.89-2.03 g/l. With the aid of chemical geothermometers the deep temperature was estimated to be 80-100°C. In one exploration well, the presence of gas phase (77% v/v CH4, 21.8% v/v N2) was detected. The geothermal exploration resulted in the characterization of the area as the "geothermal field of Sani-Afytos" and in the prospective development using the geothermal fluids in the tourism and other activities.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xing-Wang Chang ◽  
Mo Xu ◽  
Liang-Wen Jiang ◽  
Xiao Li ◽  
Yun-Hui Zhang

Numerous low-temperature geothermal waters are distributed extensively in Mangbang-Longling of western Yunnan in China, whose formation mechanism has not been completely investigated yet. This study focused on the hydrogeochemical evolution, reservoir temperature, and recharge origin of geothermal waters using hydrogeochemical and deuterium-oxygen (D-O) isotopic studies. The low-temperature geothermal waters were characterized by HCO3-Na type, while shallow cold spring was of the hydrochemical type of HCO3-Ca. The hydrogeochemical characteristics of low-temperature geothermal waters were mainly determined by the dissolution of silicate minerals based on the geological condition and correlations of major and minor ions. The reservoir temperatures of low-temperature geothermal waters ranged from 111°C to 126°C estimated by silica geothermometry and the silicon-enthalpy graphic method. Low-temperature geothermal waters circulated at the largest depth of 1794–2077 m where deep high-temperature geothermal waters were involved. The data points of δD and δ18O of the hot spring water samples in the study area show a linear right-up trend, indicating the δ18O reaction between the water and rock and a possible mixture of magmatic water from below. The low-temperature thermal waters were recharged by meteoric water at the elevation of 2362–3653 m calculated by δD values. Upwelling by heating energy, low-temperature geothermal waters were exposed as geothermal springs in the fault and fracture intersection and mixed by up to 72% shallow cold waters at surface. Based on acquired data, a conceptual model of the low-temperature geothermal waters in the Mangbang-Longling area was proposed for future exploitation.


Sign in / Sign up

Export Citation Format

Share Document