Possibilities of Green Technologies Application in Building Design from Sustainability Dimensions

Author(s):  
Andrea Moňoková ◽  
Silvia Vilčeková ◽  
Eva Krídlová Burdová

The aim of this paper is to summarize knowledge of green technologies and their applications in buildings, as well as high performance green buildings. Two alternatives of family house design are performed. The first alternative uses conventional building materials and it doesn’t follow the sustainability principles. On the other hand, the second one is designed by using the environmentally friendly materials and with sustainability principles in mind. Designs of conventional and green family house are mutually compared from energy efficiency, embodied energy and greenhouse gas emissions such as CO2eq. and SO2eq. point of view. A special focus is put on the sustainability assessment of designed houses by the Slovak environmental assessment system of buildings.

Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 150 ◽  
Author(s):  
Jouri Kanters

Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements.


Author(s):  
Martina Wolfova ◽  
Adriana Estokova ◽  
Marcela Ondova

Building materials and constructions pose a serious impact on the environment. Applying assessment tools such as life cycle assessment (LCA), it is possible to determine the environmental characteristics of materials, specific constructions or whole buildings. Today, however, there is a large amount of software that is freely available or bound by a license agreement. This paper is aimed at on comparison of the two different LCA software to evaluate the impacts of the selected construction: freely available software and software fixed by a license agreement. The comparison within the mandatory boundaries from cradle-to–gate includes the main environmental impacts such as climate changes, acidification, and embodied energy. The findings revealed that the results for the environmental parameters of constructions differ significantly regarding some structures, even though the input database was the same.


2018 ◽  
Vol 10 (11) ◽  
pp. 3966 ◽  
Author(s):  
Silvia Vilčeková ◽  
Iveta Selecká ◽  
Eva Burdová ◽  
Ľudmila Mečiarová

This paper compares the sustainability aspects of three family houses according to the Slovak building environmental assessment system (BEAS). Various categories of family houses were evaluated, including site selection, project planning, building construction, indoor environment, energy performance, and water and waste management. Based on the results, Family Houses 3 and 2 are certified as BEAS SILVER, with scores of 2.46 and 2.01, respectively. Family House 1 is certified as BEAS BRONZE, with an overall score of 1.44. The results show, not only the importance of the site in terms of availability, connectivity to the network and the potential to use renewable energy sources, but also the importance of the design and construction of the building, including the application of environmentally friendly building materials, ensuring the quality of the indoor environment and the energy efficiency of the building. The aims of this study were to highlight the current trend in the design and construction of low-rise residential family houses in Slovakia and to identify gaps in the design and construction of key sustainability aspects through the existing building environmental assessment system. In the future, many low-rise residential family houses will be assessed to modify and validate BEAS.


2021 ◽  
Author(s):  
◽  
Brian Berg

<p>This research simplifies the calculation of the Initial Embodied Energy (iEE) for commercial office buildings. The result is the improved integration of Life Cycle Assessment (LCA) assessments of building materials into the early stages of the building design process (sketch design). This maximises the effectiveness of implementing design solutions to lower a building’s environmental impact.  This thesis research proposes that building Information Models (BIM) will make calculating building material quantities easier, to simplify LCA calculations, all to improve their integration into existing sketch design phase practices, and building design decisions. This is achieved by developing a methodology for using BIM LCA tools to calculate highly detailed material quantities from a simple BIM model of sketch design phase building information. This is methodology is called an Initial Embodied Energy Building Information Model Life Cycle Assessment Building Performance Sketch (iEE BIM LCA BPS). Using this methodology calculates iEE results that are accurate, and represent a sufficient proportion (complete) of a building’s total iEE consumption, making them useful for iEE decision-making.  iEE is one example of a LCA-based indicator that was used to test, and prove the feasibility of the iEE BIM LCA BPS methodology. Proving this, the research method tests the accuracy that a BIM model can calculate case study building’s building material quantities. This included developing; a methodology for how to use the BIM tool Revit to calculate iEE; a functional definition of an iEE BIM LCA BPS based on the environmental impact, and sketch design decisions effecting building materials, and elements; and an EE simulation calibration accuracy assessment methodology, complete with a function definition of the accuracy required of an iEE simulation to ensure it’s useful for sketch design decision-making.  Two main tests were conducted as part of proving the iEE BIM LCA BPS’ feasibility. Test one assessed and proved that the iEE BIM LCA BPS model based on sketch design information does represent a sufficient proportion (complete) of a building’s total iEE consumption, so that are useful for iEE decision-making. This was tested by comparing the building material quantities from a SOQ (SOQ) produced to a sketch design level of detail (truth model 3), to an as-built level of detail, defined as current iEE best practices (truth model 1). Subsequent to proving that the iEE BIM LCA BPS is sufficiently complete, test two assessed if a BIM model and tool could calculate building material quantities accurately compared to truth model 3. The outcome was answering the research question of, how detailed does a BIM model need to be to calculate accurate building material quantities for a building material LCA (LCA) assessment?  The inference of this thesis research is a methodology for using BIM models to calculate the iEE of New Zealand commercial office buildings in the early phases of the design process. The outcome was that a building design team’s current level of sketch design phase information is sufficiently detailed for sketch design phase iEE assessment. This means, that iEE and other LCA-based assessment indicators can be integrated into a design team’s existing design process, practices, and decisions, with no restructuring required.</p>


2020 ◽  
Vol 15 (2) ◽  
pp. 55-62
Author(s):  
Marcela Ondová ◽  
Adriana Eštoková ◽  
Martina Fabianová

AbstractNowadays, the environmental assessment becomes more and more of interest as an additional tool for the decision-makers. The researchers in civil engineering focus on building materials, structures as well as whole buildings environmental evaluation. Analysis of the environmental impact of particular structures may be helpful for selecting building materials, with regard to the environmental performance of buildings in the early project phase. The aim of this paper is presentation of an environmental evaluation of the rarely assessed particular structures – building foundations and the analysis of the share of the building foundations to the overall environmental impact of building as well. The obtained data point to the need to include the environmental impacts of foundations when assessing the buildings, because of it is a necessary part of any type of family house. One kilogram of built-in foundations materials was responsible for emissions of 0.092 kg of greenhouse gases expressed by carbon dioxide (CO2). Embodied energy was calculated as equal to 1.14 MJ per 1kg of foundations materials and 832.2 MJ/m2 per building floor area. The foundation materials of houses contributed to the total environmental impact of the whole buildings by, on average, 15.0 and 22.8 % for embodied energy and global warming potential, respectively.


2019 ◽  
Vol 11 (20) ◽  
pp. 5545 ◽  
Author(s):  
Mostafa Sabbagh ◽  
Osama Mansour ◽  
Abdulaziz Banawi

It has been over three decades since the term “sustainable development” was coined in Brundtland’s report in 1987, and 28 years have passed since the world’s first sustainability assessment method for buildings was founded by the Building Research Establishment in UK in 1990. During these three decades, many sustainability standards, codes, and rating systems were created and used to help in designing, constructing, maintaining, rating, and labeling buildings with attaining the principles of sustainability. Yet by looking at the Arab world at the beginning of 2019, one can argue that, although the Arab countries have dedicated the effort and budget to save energy, water, and natural resources, the region as a whole is still struggling to shift the paradigm of the building industry from conventional to sustainable. This struggle raises some questions; are there any challenges that Arab countries must overcome to leap forward to a prosperous sustainable building design and construction practices? Why are existing green building rating systems such as Estidama in United Arab Emirates, global sustainability assessment system (GSAS) in Qatar, and ARZ in Lebanon lagging behind the trends of green building rating systems in the developed countries? What are the coordinated steps needed to expedite this movement across the region? The current study explores the limits and potentials of the green building industry in the Arab world through analysis of the green building initiatives, academic scholarship activities in architecture and engineering sectors, and feedback from green building professionals across the Arab world. This article introduces a theoretical framework to expedite the green building movement in the Arab region; the framework is shaped by the environmental, social, and economic factors that are crucial to the transformation of the building industry from conventional to sustainable. The study seeks to support a line of research that could help governments in the Arab world catch up with the global green building trends.


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 135 ◽  
Author(s):  
Margarida Feria ◽  
Miguel Amado

This article discusses the potential of introducing sustainability in the architectural design method so that building solutions can contribute to sustainable development. Sustainability has introduced a new pattern to the architecture practice, which involves important modifications in the teaching of architecture in what regards to the design methods to students but also practitioners, in order to provide more comfort for present and future generations. In the design phases of the architectural design, the subject of the three pillars of sustainability—economic, social and environmental factors—are not always considered by the architect in the decision-making process. The topic involves actions that will influence the overall performance of the building throughout its lifecycle. Sustainability has not been a priority in the training of the architect. The existing tools, Sustainability Assessment and Certification Systems, although adequate to evaluate the sustainability component of a building, do not prove to be the most appropriate tool to support architects during the design process. Therefore, the implementation and evaluation of strategies that integrate the sustainability principles need to be included in the early stages of the architectural design method. In addition to collecting data through literature review, a survey was conducted among 217 architects and architecture students in order to access the need for a tool that supports architects in the issue of sustainability. The results concluded that, although all the respondents agree about what concerns the implementation of sustainability principles in the architectural design method, only few respondents guarantee that these principles are implemented by means of a rigorous evaluation. Thus, the purpose of this paper is to identify a set of guidelines that can help architects to change the current approach of architectural practice towards more sustainable strategies in building design. This means the introduction, implementation and evaluation of sustainability principles in different phases of the architectural design method. The proposal stresses the main strategies that need to be considered in each phase of the architectural project and defines a level of recommendation in each guideline that allows the architect to evaluate the implementation of sustainability.


2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>


2021 ◽  
Author(s):  
Jacob Coleman

<p><b>New Zealand has a serious construction and demolition(C&D) waste issue. A Ministry for the Environment studyfrom 2019 found that 2.9 million tonnes of C&D waste aredisposed of at C&D fills nationwide every year (Ministry forthe Environment, 2019). Averaged across the populationthis equates to nearly 600 kg per person. AucklandCouncil’s ‘Low Carbon Auckland’ plan presents totallandfill waste reduction targets of 30% by 2020, 60% by2030, and ‘zero waste’ by 2040 (Auckland Council, 2014).</b></p> <p>To achieve this goal of zero waste, building materialsmust operate within a closed loop (Baker-Brown, 2017;McDonough & Braungart, 2002). Materials can either bea part of a closed organic loop (natural biodegradablematerials) or a closed technical loop (man-made cycleof reuse) (Baker-Brown, 2017; McDonough & Braungart,2002).</p> <p>This thesis aims to achieve a zero-waste mediumdensity housing design for New Zealand that maximisesthe use of biodegradable building materials. However,it is hypothesised along with Sassi (2006) that bothbiodegradable and reusable components will be requiredto achieve zero waste. This thesis also seeks the mostsuitable biodegradable materials for New Zealand’sclimate and the optimum construction approach tosupport these materials. This research also contributestowards reducing the embodied energy and greenhousegas emissions of the New Zealand building industry.</p> <p>The most suitable biodegradable materials for New Zealandwere selected based on availability and performance foundto be untreated timber, clay plaster and, straw and woolinsulation. In-situ construction, prefabricated wall panelsand, standardised block modules were then compared tofind the most suitable construction approach to supportthese materials and was found to be prefabricated wallpanels. A building design was then pursued driven by theneed to protect the biodegradable insulation materialsfrom moisture infiltration. The design is then integratedwithin a site in Upper Hutt to address the demand forhousing densification and demonstrate the potential forapplication of biodegradable materials to an urban settingat the scale of a medium density housing development.</p> <p>A detailed BIM model of the building design was producedfrom which volumes of individual components wereextracted and categorised regarding their biodegradabilityor reusability or lack thereof. This was done to determinethe proportion and quantity of biodegradable materials andwaste generated by the design. An identical design usingconventional New Zealand materials and constructiontechniques was also produced for comparison.</p> <p>Biodegradable materials made up 82% of the final designconstruction by volume and 91% of the construction byvolume was diverted from landfill (reusable componentsmade up 9% of the construction). This suggests thatAuckland Council’s goal of 60% waste reduction by 2030 istheoretically possible for developments of a similar scaleto the final design. However, the goal of ‘zero waste’ by2040 seems unobtainable even if significant improvementsare made.</p>


Sign in / Sign up

Export Citation Format

Share Document