Research of experimental road pavement structures

Author(s):  
D. Cygas ◽  
A. Laurinavicius ◽  
A. Vaitkus ◽  
V. Puodziukas
2018 ◽  
pp. 128-145
Author(s):  
Volodynyr Mozghovyi ◽  
◽  
Viktor Gaidaichuk ◽  
Yurii Zaiets ◽  
Liudmyla Shevchuk ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Hatem Alhazmi ◽  
Syyed Adnan Raheel Shah ◽  
Muhammad Aamir Basheer

Rigid pavement structures are one of the costly components of the infrastructure development process. It consumes a huge quantity of ingredients necessary for concrete development. Hence, a newly introduced concept of circular economy in combination with waste management was introduced to solve this problem. In this study, three waste products (rice husk ash (RHA), wood sawdust (WSD), and processes waste tea (PWT)) was utilized to develop the concrete for rigid pavement structures by replacing the sand, i.e., a filler material at different percentages. During the testing procedure of compressive (CS), tensile (TS), and flexural strength (FS) properties, RHA and WSD at 5% replacement were found to be a good replacement of sand to develop required concrete. This study will help in the production of eco-friendly rigid pavement structures and a pathway of life cycle assessment in the future.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Łukasz Skotnicki ◽  
Jarosław Kuźniewski ◽  
Antoni Szydło

The reduction in natural resources and aspects of environmental protection necessitate alternative uses of waste materials in the area of construction. Recycling is also observed in road construction where mineral–cement emulsion (MCE) mixtures are applied. The MCE mix is a conglomerate that can be used to make the base layer in road pavement structures. MCE mixes contain reclaimed asphalt from old, degraded road surfaces, aggregate improving the gradation, asphalt emulsion, and cement as a binder. The use of these ingredients, especially cement, can cause shrinkage and cracks in road layers. The article presents selected issues related to the problem of cracking in MCE mixtures. The authors of the study focused on reducing the cracking phenomenon in MCE mixes by using an innovative cement binder with recycled materials. The innovative cement binder based on dusty by-products from cement plants also contributes to the optimization of the recycling process in road surfaces. The research was carried out in the field of stiffness, fatigue life, crack resistance, and shrinkage analysis of mineral–cement emulsion mixes. It was found that it was possible to reduce the stiffness and the cracking in MCE mixes. The use of innovative binders will positively affect the durability of road pavements.


2016 ◽  
Vol 11 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Maria de Lurdes Antunes ◽  
Vânia Marecos ◽  
José Neves ◽  
João Morgado

The construction and maintenance of a road network involve the expenditure of large budgets. In order to optimize the investments in road infrastructures, designers and decision makers should have the instruments to make the most suitable decision of paving solutions for each particular situation. The life-cycle assessment is an important tool of different road pavement solutions with this purpose. This paper presents a study concerning the life-cycle cost analysis of different flexible and semi-rigid paving alternatives, with the objective to contribute for a better support in the decision process when designing new pavement structures. The analysis was carried out using data on construction costs of certain typical pavement structures and taking into consideration appropriate performance models for each type of structure being selected. The models were calibrated using results from long term performance studies across Europe and the maintenance strategies considered have taken into account the current practice also found in the European context. Besides the life-cycle administration costs, the proposed methodology also deals with user and environmental costs through its inclusion in the decision process using multi-criteria analysis. It was demonstrated that this methodology could be a simple and useful tool in order to achieve the most adequate paving solutions of a road network, in terms of construction and maintenance activities, based simultaneously on technical, economic and environmental criteria.


2018 ◽  
Vol 195 ◽  
pp. 04002
Author(s):  
Bagus Hario Setiadji

To date, non-destruction testing (NDT) method is the most popular method to assess the condition of road pavement. Among all evaluation procedures of the NDT method, load-deflection backcalculation analysis is one that is developed widely to understand the structural behavior of road pavement. On one side, the use of this analysis is greatly beneficial for presenting the layer characteristic accurately. However, the analysis requires specialist expertise. To overcome this, deflection bowl parameter application could become one alternative. The parameters are very easy to use; however, the intention of the parameters so far is only as an indication of the condition of the structural layer of the road pavement. Therefore, the parameters have to be used with careful consideration. In this study, the parameters were evaluated to determine the optimal usage of the parameters against different structures of road pavements. The results showed that a simplification of the number of parameters and a reformulation of the parameters were required by taking into account the ease of use in practice, the accuracy of subgrade modulus determination and the possibility to evaluate pavement structures with a layer number less than four.


2018 ◽  
Vol 64 (3) ◽  
pp. 81-97
Author(s):  
P. Tutka ◽  
R. Nagórski ◽  
P. Radziszewski ◽  
M. Sarnowski ◽  
M. Złotowska

SummaryPavements made of cement concrete, used for road constructions, are damaged during use. This applies to both the pavements of rural and forest roads with very low traffic loads, as well as road pavements with high traffic loads. One of the most effective ways of repairing damaged concrete cement pavements is through placing an asphalt overlay on a concrete slab. In order to increase the fatigue life of the asphalt overlay, asphalt mixtures are modified with fibres. One technological solution is to use FRP (Fiber Reinforced Polymer), an innovative material with improved properties. The aim of this paper is to assess the impact of asphalt overlays modified with a new type of fibres to strengthen the durability of weakened cement concrete pavement structures. On the basis of the conducted analyses, it was shown that the use of an asphalt layer reinforcement increases fatigue life, for both 15 cm thick prefabricated slabs and a typical road pavement for average traffic made of 25 cm doweled and anchored concrete slabs. There was a significant increase in the fatigue life of the concrete pavement structure as a result of modifying the overlaid asphalt mixture with FRP fibres.


2020 ◽  
Author(s):  
HYUN KYU PARK ◽  
Hyuk Lee ◽  
Vanissorn Vimonsatit

Abstract Road failures are often caused by structural weaknesses, and particularly unsealed roads are vulnerable to water as water easily flows into road structures. Moisture susceptibility of materials is an important aspect when pavements are designed as moisture can weaken bonds between aggregates. Pindan soil is a red soil, known as a soft and moisture sensitive soil. Polymer stabilisers have been proved that they can improve soil mechanical properties by providing an internal waterproofing. Studies of the polymer-Pindan soil stabilisation have been focused on engineering performances, but literature shows little information on the fundamental information of Pindan soil. This project focuses on fundamental information of Pindan soil and its improved performances using polymer stabilisers. Plastic index, specific gravity and particle size distribution were tested to obtain the basic properties. Compaction, Unconfined Compressive Strength and California Bearing Ratio tests were performed to determine the mechanical properties. The chemical property was examined using X-ray diffraction. Furthermore, the waterproof effect of the polymers on the stabilised Pindan soil was investigated from capillary rise tests. In addition, the mechanical properties of individual soil grains were investigated using nanoindentation tests. The materials used for this investigation primarily consisted of Pindan soil collected in Broome, Western Australia, and three polymer products manufactured in Australia. Based on the results, it is evident that the failure behaviour, strain and strength as well as the basic properties of the soils are affected and changed by the Polymer stabilisers. The type of polymer influenced the optimum moisture contents and strengths rather than the amount of polymer. Similarly, Nanoindentation technology provided various information such as elastic modulus, hardness, packing density, stiffness, cohesion and fracture toughness of soils at nano-scales. Polymers can reduce water ingress and minimise moisture in the pavement structures. Thus, the structures can maintain its strength and prevent deformation, which will increase the lifetime of unsealed pavements.


2021 ◽  
Vol 11 (18) ◽  
pp. 8525
Author(s):  
Gerrit J. Jordaan ◽  
Wynand J. vdM Steyn

The use of naturally available materials not conforming to traditional specifications or standards in the base and sub-base layers of road pavement structures and stabilised with New-age (Nano) Modified Emulsions (NME) have been tested, implemented and successfully verified through Accelerated Pavement Testing (APT) in South Africa. This was made possible through the development and use of a materials design procedure addressing fundamental principles and based on scientific concepts which are universally applicable. The understanding and incorporation of the chemical interactions between the mineralogy of the materials and an NME stabilising agent (compatibility between the chemistry of the reactive agents and material mineralogy) into the design approach is key to achieving the required engineering properties. The evaluation of the stabilised materials is performed using tests indicative of the basic engineering properties (physics) of compressive strengths, tensile strengths and durability. This article describes the basic materials design approach that was developed to ensure that organofunctional nano-silane modified emulsions can successfully be used for pavement layer construction utilising naturally available materials at a low risk. The enablement of the use of naturally available materials in all pavement layers can have a considerable impact on the unit cost and lifecycle costs of road transportation infrastructure.


Sign in / Sign up

Export Citation Format

Share Document