scholarly journals The effect of concrete creep on the long-term tension-stiffening law and prediction of a time-dependent inertia moment of the cracked RC flexural cross-sections

Author(s):  
Robertas Balevičius

In the paper, a long-term stress-strain model is proposed for predicting the deformational response of the cracked reinforced concrete beams subjected to sustained bending. The linear and non-linear evolution creep strains is evaluated in the analytical manner by using an average stress-strain approach. The cracking and creep phenomena are coupled by two reologic elements connected in a series. In this way, the total strain of concrete prior to cracking is determined by a linear creep law accounting for the stress rate effect, while the post-cracking behavior is specified as a sum of elastic strain between cracks, creep and cracked concrete strain, defined by the descending branch of the stress-strain law. The smeared crack approach is adopted and, in turn, this law is associated with the tension stiffening phenomenon. The formulae accounting for the tension stiffening decay with time due to time-variable stress are proposed and applied in prediction of the inertia moment of the cracked RC flexural members along with the obtained results verification with the experimental data.

2008 ◽  
Vol 14 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Viktor Gribniak ◽  
Gintaris Kaklauskas ◽  
Darius Bacinskas

This paper introduces the recent state of research on shrinkage of concrete. It reviews prediction models of shrinkage strain and curvature analysis methods of reinforced concrete members. New test data on concrete shrinkage has been presented. Various factors that influence shrinkage have been discussed. A calculation technique on short‐term deformations of cracked reinforced concrete members including shrinkage has been introduced. The technique is based on layer model and smeared crack approach. Shrinkage influence on behaviour of reinforced concrete beams was investigated numerically and compared with test data reported in the literature. It has been shown that shrinkage has significantly reduced the cracking resistance and leads to larger deflections. Santrauka Straipsnyje atlikta betono traukimosi įtakos gelžbetoninių elementų elgsenai analizė, pateikta betono traukimosi deformacijų apskaičiavimo modelių apžvalga, aptarti traukimosi sukeltų kreivių nesimetriškai armuotuose gelžbetoniniuose elementuose apskaičiavimo metodai, taip pat pateikti nauji betono traukimosi eksperimentinių tyrimų duomenys. Aptarti veiksniai, turintys įtaką traukimosi deformacijoms, aprašytas supleišėjusių gelžbetoninių elementų trumpalaikių deformacijų apskaičiavimo algoritmas, rodantis traukimosi įtaką. Algoritmas pagrįstas sluoksnių modeliu ir vidutinių deformacijų koncepcija. Traukimosi įtaka gelžbetoninių sijų elgsenai nagrinėta, taikant normų bei sluoksnių metodus. Teoriniai rezultatai palyginti su literatūroje paskelbtais eksperimentinių tyrimų rezultatais. Parodyta, kad betono traukimasis gerokai sumažina trumpalaike apkrova veikiamų gelžbetoninių sijų atsparumą pleišėjimui bei lemia didesnes įlinkių reikšmes.


2020 ◽  
Vol 2 (1) ◽  
pp. 207-214
Author(s):  
Vasyl Karpiuk ◽  
Yuliia Somina ◽  
Oksana Maistrenko ◽  
Fedir Karpiuk

AbstractThe paper deals with the working peculiarities of the support zones of reinforced concrete elements subject to bending with due account of the eccentric compression and tension. The authors performed simulation of the stress-strain behaviour of the indicated structures with the aid of “Lira” software which results are shown in the graphical and tabulated form. The performed simulation allowed of tracing the work of the studied sample beams till collapse. Such approach made it possible to single out and generalize the main collapse patterns of the inclined cross-sections of the reinforced concrete elements subject to bending on which basis the authors developed the improved method to calculate their strength (Karpiuk et al., 2019).


2000 ◽  
Vol 6 (5) ◽  
pp. 329-338
Author(s):  
Gintaris Kaklauskas

The paper reviews both analytical and finite element methods for deformational analysis of flexural reinforced concrete members subjected to short-term loading. In a state-of-the-art summary of various proposed stress-strain relationships for concrete and reinforcement, a special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. Empirical code methods of different countries (American Code (ACI Committee 318 [7]), the Eurocode EC2 [8], and the Russian (old Soviet) Code (SNiP 2.03.01-84 [5]) for deflection calculation of flexural reinforced concrete members are briefly described in section 2. Although these methods are based on different analytical approaches, all of them proved to be accurate tools for deflection assessment of members with high and average reinforcement ratios. It should be noted that these methods have quite a different level of complexity since the Russian Code method employs a great number of parameters and expressions whereas the ACI and EC2 methods are simple and include only basic parameters. Approaches of numerical simulation and constitutive relationships are discussed in Chapter 3. All numerical simulation research can be classified into two large groups according to two different approaches for crack modelling (subsection 3.1): 1) Discrete cracking model. In this approach, cracks are traced individually as they progressively alter the topology of the structure. 2) Smeared cracking model. The cracked concrete is assumed to remain a continuum, ie the cracks are smeared out in the continuous fashion. After cracking, the concrete becomes orthotropic with one of the material axes being oriented along the direction of cracking. Constitutive relationships for steel and plain concrete are presented in subsection 3.2. A special emphasis is made on critical survey of modelling post-cracking behaviour of tensile concrete in smeared crack approach. It has been concluded that although empirical design codes of different countries ensure safe design, they do not reveal the actual stress-strain state of cracked structures and often lack physical interpretation. Numerical methods which were rapidly progressing within last three decades are based on universal principles and can include all possible effects such as material nonlinearities, concrete cracking, creep and shrinkage, reinforcement slip, etc. However, the progress is mostly related to the development of mathematical apparatus, but not material models or, in other words, the development was rather qualitative than quantitative. Constitutive relationships often are too simplified and do not reflect complex multi-factor nature of the material. Existing constitutive relationships for concrete in tension do not assure higher statistical accuracy of deflection estimates for flexural reinforced concrete members in comparison to those obtained by empirical code methods. The author has developed integral constitutive model for deformational analysis of flexural reinforced concrete members [36]. The integral constitutive model consists of traditional constitutive relationships for reinforcement and compressive concrete and the integral constitutive relationship for cracked tensile concrete which accumulates cracking, tension stiffening, reinforcement slippage and shrinkage effects. This constitutive model can be applied not only in a finite element analysis, but also in a simple iterative technique based on classical principles of strength of materials extended to layered approach.


2021 ◽  
pp. 002199832110029
Author(s):  
Katarína Gajdošová ◽  
Róbert Sonnenschein ◽  
Stanislav Blaho

This paper presents an investigation of the performance of concrete beams reinforced with glass fiber-reinforced polymers (GFRP) under short-term loading. A total of six specimens with rectangular cross-sections (75 mm in height and 150 mm in width) were tested under a four-point bending test to failure. Each specimen was reinforced with two GFRP bars with diameters of 8 mm. The results of this study demonstrated the behavior of GFRP-reinforced concrete members and a validation of the available calculation methods for the deflection of these members and assumed possibilities of the use of a GFRP reinforcement over the long term. The results of the study presented show a very good agreement of an experimentally measured and theoretically calculated instantaneous deflection when using the approaches in the European and American standards. In calculations of long-term deflections, the results are highly inconsistent and seem to be quite overestimated in some cases. The study shows the necessity of real-time long-term measurements to demonstrate the real deformations to be assumed during design of structures reinforced with GFRP reinforcement.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fahed Alrshoudi

There has been a rising interest in utilising textile reinforcement such as carbon tows in constructing concrete components to enhance the performance of conventional reinforced concrete. Textile-reinforced concrete (TRC) has been used as a construction material mostly as primary reinforcement. However, the structural performance of TRC members has not been investigated in depth. Therefore, to better understand TRC beams’ behaviour under bending load, a widespread experimental investigation was conducted. The results of tensile stress-strain, load-deflection, moment-curvature, and tension stiffening behaviours of TRC beams were associated with conventional steel-reinforced concrete (SRC) beams. In this study, the four-point bending and tensile strength tests were performed. The results revealed that, unlike the stress-strain behaviour observed in steel, textile reinforcement does not exhibit yielding strain. The flexural behaviour of TRC beams shows no similarity to that of SRC beams at postcracking formation. Besides, the moment capacity and tension stiffening of TRC beams were found 56% and 7 times higher than those of SRC beams, respectively. Therefore, in light of these results, it can be said that TRC beams behaviour differs from that of SRC beams.


2003 ◽  
Vol 30 (5) ◽  
pp. 890-901 ◽  
Author(s):  
Radin Espandar ◽  
Vahid Lotfi ◽  
Ghani Razaqpur

A rigorous and relatively efficient algorithm based on the non-orthogonal smeared crack approach is coded in a special finite element program to study the seismic response of arch dams. The formulation is briefly presented. The 130 m high Shahid Rajaee arch dam in Iran subjected to the Friuli-Tolmezzo earthquake is selected to present a practical application of the technique. Under the same geometry and loading conditions, six nonlinear analyses with different parameters are performed, and the results are compared with each other and a linear case. The varied parameters include secant and elastic unloading–reloading options, threshold angle, and tensile strength of the material. It is concluded that the non-orthogonal smeared crack approach can redistribute the state of stresses and produces a more realistic profile of stresses in the dam. A drift in the crest displacements forms the prominent characteristics of the cracking behavior. The results also suggest that the dam can suffer significant cracking during a strong earthquake and still remain stable. Moreover, the influences of the mentioned parameters in the seismic response of the dam are comprehensively discussed.Key words: nonlinear dynamic analysis, concrete arch dam, smeared crack approach.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2021 ◽  
Vol 36 (1) ◽  
pp. 33-59
Author(s):  
Jim van der Meulen

AbstractThis article charts the long-term development of seigneurial governance within the principality of Guelders in the Low Countries. Proceeding from four quantitative cross-sections (c. 1325, 1475, 1540, 1570) of seigneurial lordships, the conclusion is that seigneurial governance remained stable in late medieval Guelders. The central argument is that this persistence of seigneurial governance was an effect of active collaboration between princely administrations, lords, and local communities. Together, the princely government and seigneuries of Guelders formed an integrated, yet polycentric, state. The article thereby challenges the narrative of progressive state centralisation that predominates in the historiography of pre-modern state formation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2292
Author(s):  
Alaaeldin Abouelleil ◽  
Hayder A. Rasheed

Nonlinear analysis of structural members is vital to understand the behavior and the response of reinforced concrete members. Even though most design procedures concentrate on the ultimate stage of response towards the end of the post-yielding zone as the decisive design criterion, the structural members usually function at the service load levels within the post-cracking zone. Therefore, cracking is a critical aspect of concrete behavior that affects the overall response of reinforced concrete beams. The initiation and the propagation of the cracks are affected directly by the tension and shear stresses in the beam. In flexural beams, the tensile stresses dominate the crack onset and its growth. Cracks in reinforced concrete flexural beams leave non-cracked regions in between the cracked sections. In order to apply a consistent analysis strategy, the smeared crack approach averages the behavior of these different cracked sections and uncracked in between regions to generate an accurate global response of the entire beam. This study presents a numerical constitutive tensile model that captures the complete tensile response of the reinforced concrete flexural member, in terms of averaged/smeared crack response. As a second step, this model was examined against a large pool of experimental data to validate its accuracy. Overall, the main objective of this study is to develop a representative constitutive tensile model for reinforced concrete flexural members and validate its accuracy against experimental results. The full nonlinear sectional response is analytically realized, based on the assumed trilinear moment–curvature response and the assumed trilinear moment–extreme fiber compressive strain response. This is considered as the secondary outcome of the present study.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Alinda Dey ◽  
Akshay Vijay Vastrad ◽  
Mattia Francesco Bado ◽  
Aleksandr Sokolov ◽  
Gintaris Kaklauskas

The contribution of concrete to the tensile stiffness (tension stiffening) of a reinforced concrete (RC) member is a key governing factor for structural serviceability analyses. However, among the current tension stiffening models, few consider the effect brought forth by concrete shrinkage, and none studies take account of the effect for very long-term shrinkage. The present work intends to tackle this exact issue by testing multiple RC tensile elements (with different bar diameters and reinforcement ratios) after a five-year shrinking time period. The experimental deformative and tension stiffening responses were subjected to a mathematical process of shrinkage removal aimed at assessing its effect on the former. The results showed shrinkage distinctly lowered the cracking load of the RC members and caused an apparent tension stiffening reduction. Furthermore, both of these effects were exacerbated in the members with higher reinforcement ratios. The experimental and shrinkage-free behaviors of the RC elements were finally compared to the values predicted by the CEB-fib Model Code 2010 and the Euro Code 2. Interestingly, as a consequence of the long-term shrinkage, the codes expressed a smaller relative error when compared to the shrinkage-free curves versus the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document