scholarly journals REORGANIZATION OF LITHUANIAN AIRSPACE

2010 ◽  
Vol 2 (6) ◽  
pp. 103-109
Author(s):  
Vaidotas Kondroška ◽  
Jonas Stankūnas

The basic purpose of the article is considering problems related to ensuring the required capacity of Lithuanian airspace and organising the provision of air traffic services in the most efficient way. The paper presents the results of analysis and experimental research on several scenarios of Lithuanian airspace models that are the most appropriate from the point of view of air traffic control. To allow for a realistic comparison between the scenarios and traffic samples, the current route network, a real traffic sample and the existing traffic dynamics have been used. Furthermore, all other related aspects such as flight level occupancy, flight time, aircraft type and traffic flows have been taken into consideration. The results of analysis will form a basis for ensuring the required capacity of Lithuanian airspace.

1967 ◽  
Vol 20 (2) ◽  
pp. 176-187
Author(s):  
J. Villiers

As a general rule the navigational function is aimed at determining the position of the aircraft in order to resolve three types of problem:(1) To subject the aircraft's flight path to an optimum trajectory calculated before departure or progressively adapted in course of flight to the circumstances encountered.(2) To choose at each point of the selected flight path the flight system best adapted to the safety and economy of the flight.(3) Taking into account the presence of other aircraft in the airspace, to know and make known the actual position and the information allowing provision to be made for future positions, so as to permit effective air traffic control.Departures of the actual from the chosen flight path penalize the flight by a lowering of economy (in flying time or fuel consumption). It does not seem, however, that the problems raised from this point of view by S.S.T. are by nature or in difficulty any different from those which affect conventional aircraft. Taking into account the present-day precision of navigational aids there is every reason to believe that departures of the actual flight path from the optimum flight path will introduce a penalization which it is possible to ignore when compared with the penalization due to the inaccuracy of the knowledge of the elements (winds, temperatures, pressures) which have, in fact, served to determine this optimum flight path.


Author(s):  
Javier A Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Álvaro Rodríguez-Sanz ◽  
Rocío Barragán ◽  
Rosa M Arnaldo-Valdés

Continuous climb operation is an operational concept that allows airlines to perform an optimal departing trajectory avoiding air traffic control segregation requirements. This concept implies the design and integration of air traffic flows for the sake of safety performance. This paper designs a new conflict-detection air traffic control tool based on the blocking-area concept, characterises the conflict probability between air traffic flows and assesses the impact of continuous climb operation integration in a terminal manoeuvring area. In this paper, a conflict is set out by the infringement of vertical and longitudinal separation minima and coincides with the probability of air traffic control tool usage. Moreover, this research discusses two different approaches for the conflict-detection air traffic control tool: a static approach considering nominal continuous climb operations and landing trajectories, and a dynamic approach that assesses 105 continuous climb operations and landing trajectories. Finally, the air traffic control tool is implemented using Palma TMA data and proves that out of 11 intersections (between departing and landing routes), solely 4 generate vertical separation infringements. The conflict probability between continuous climb operations and arrivals is less than 10−5. Except for one intersection, that is roughly 10−2, similar to current air traffic control intervention designed levels. Therefore, results conclude the viability of the conflict-detection air traffic control tool and continuous climb operations integration.


Author(s):  
Cyril Onwubiko ◽  
Thomas Owens

The importance of situational awareness to air traffic control, and hence the safety and security of aircraft, is evident, demonstrable, and has been hugely significant. The main purpose of this book is to convey an understanding of the impact of situational awareness on the design of the next generation computer systems, network architectures, and platform infrastructures. The book achieves its purpose by presenting principles, methods, and applications of situational awareness for computer network defense; in doing so, it makes clear the benefits situational awareness can provide for information security, computer security and computer network defense. This book contributes to cross-multidisciplinary discussion among researchers, academia, and practitioners who are engaged objectively in sharing, contributing, and showcasing how situational awareness can be adapted to computer systems, network infrastructure designs, and architecture patterns. The goal of this chapter is to explain situational awareness for computer network defense from the point of view of its most basic foundations as a spring board to discuss how situational awareness can be relevant to computer network defense, whose operations and environment are similar to air traffic control where the application of situational awareness has been hugely successful.


1975 ◽  
Vol 28 (1) ◽  
pp. 25-30
Author(s):  
Jacques Villiers

Experience gained in the automation of air traffic control is of interest from more than one point of view, and not only because of the range and diversity of new and delicate problems to which this application of automation has given rise, and for which it is necessary to find simultaneous solutions. It has been necessary to design and develop new methods for the acquisition, processing and display of information and to link them with digital computers, for which a complex and voluminous ‘real-time’ software has had to be compiled and brought up to date without interrupting the procedure. But it is when it comes to visualizing the total pattern that the most difficult problems arise because the major decisions determining the success or failure of the operation have had to be taken without the possibility of acquiring any preliminary experience.Man and the computer have to work together in real time as harmoniously as possible to obtain the best results from the modern data processing systems that it was proposed to employ; it was therefore essential to consider very deeply the complementary roles which each was intended to play.To describe this research in detail or the solutions arrived at would not be of great interest to those other than specialists.


2019 ◽  
Vol 72 (5) ◽  
pp. 1140-1158
Author(s):  
Busyairah Syd Ali ◽  
Nur Asheila Taib

In Air Traffic Control (ATC), aircraft altitude data is used to keep an aircraft within a specified minimum distance vertically from other aircraft, terrain and obstacles to reduce the risk of collision. Two types of altitude data are downlinked by radar; actual flight level (Mode C) and selected altitude (Mode S). Flight level indicates pressure altitude, also known as barometric altitude used by controllers for aircraft vertical separation. ‘Selected altitude’ presents intent only, and hence cannot be used for separation purposes. The emergence of Global Navigation Satellite Systems (GNSSs) has enabled geometric altitude on board and to the controllers via the Automatic Dependent Surveillance-Broadcast (ADS-B) system. In addition, ADS-B provides quality indicator parameters for both geometric and barometric altitudes. Availability of this information will enhance Air Traffic Management (ATM) safety. For example, incidents due to Altimetry System Error (ASE) may potentially be avoided with this information. This work investigates the use and availability of these parameters and studies the characteristics of geometric and barometric data and other data that complement the use of these altitude data in the ADS-B messages. Findings show that only 8·7% of the altitude deviation is < 245 feet (which is a requirement of the International Civil Aviation Organization (ICAO) to operate in Reduced Vertical Separation Minimum (RVSM) airspace). This work provides an alert/guidance for future ground or airborne applications that may utilise geometric/barometric altitude data from ADS-B, to include safety barriers that can be found or analysed from the ADS-B messages itself to ensure ATM safety.


2012 ◽  
Vol 27 (3) ◽  
pp. 291-307 ◽  
Author(s):  
Nicolas Barnier ◽  
Cyril Allignol

AbstractAs acknowledged by the SESAR (Single European Sky ATM (Air Traffic Management) Research) program, current Air Traffic Control (ATC) systems must be drastically improved to accommodate the predicted traffic growth in Europe. In this context, the Episode 3 project aims at assessing the performance of new ATM concepts, like 4D-trajectory planning and strategic deconfliction.One of the bottlenecks impeding ATC performances is the hourly capacity constraints defined on each en-route ATC sector to limit the rate of aircraft. Previous works were mainly focused on optimizing the current ground holding slot allocation process devised to satisfy these constraints. We propose to estimate the cost of directly solving all conflicts in the upper airspace with ground holding, provided that aircraft were able to follow their trajectories accurately.We present a Constraint Programming model of this large-scale combinatorial optimization problem and the results obtained with the FaCiLe (Functional Constraint Library). We study the effect of uncertainties on the departure time and estimate the cost of improving the robustness of our solutions with the Complete Air Traffic Simulator (CATS). Encouraging results were obtained without uncertainty but the costs of robust solutions are prohibitive. Our approach may however be improved, for example, with a prior flight level allocation and the dynamic resolution of remaining conflicts with one of CATS’ modules.


1994 ◽  
Vol 47 (1) ◽  
pp. 70-88 ◽  
Author(s):  
Dionyssios Trivizas

A realistic runway capacity study for two major airports, namely Frankfurt (EDDF) and Chicago O'Hare (ORD) is presented, assessing the effect of optimal scheduling on the runway capacity and air traffic delays. The maximum position shift (MPS) runway scheduling algorithm, used in the study, was developed by Trivizas at the Massachusetts Institute of Technology (1987).EDDF is studied in the context of 160 major European airports, with a real traffic sample from 6 July, 1990. ORD is studied in the context of 26 major US airports using a large traffic sample from 1 March, 1989. Secondary airport traffic has been assigned to the geographically nearest major hub and time compression has been used to extrapolate to an artificially denser scenario.The results show that optimal scheduling can bring about capacity improvements of the order of 20 percent, which in turn reduce delays up to 70 percent. These results are the product of a dynamic traffic management process which has been visually validated by observing animated runway operations and monitor functions.The study has been conducted with TMSIM, a comprehensive, object-oriented simulation tool that allows one to build an understanding of the structure and functionality of the air traffic control system, by modelling its components, their functionality and interactions, and measuring component and system performance. It features interactive route network editing (using menu/mouse techniques), complete route and airport structure modelling, independent flight and ATC objects, 3-D animation, advanced algorithms for scheduling, routeing, flow management, airspace restructuring (sectorization) and performance (capacity and communications workload) analysis.


2019 ◽  
Vol 20 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Márton Tamás Horváth ◽  
Qiong Lu ◽  
Tamás Tettamanti ◽  
Árpád Török ◽  
Zsolt Szalay

Abstract As highly automated and autonomous vehicles (AVs) become more and more widespread, inducing the change of traffic dynamics, significant changes occur in traditional traffic control. So far, automotive testing has been done mostly in real-world or pure virtual simulation environment. However, this practice is quite obsolete as testing in real traffic conditions can be quite costly, moreover purely simulation based testing might be inadequate for specific goals. Accordingly, a hybrid concept of the Vehicle-inthe-Loop (ViL) was born recently, in accordance with the Hardware-in-the-Loop concept, i.e. in the ViL concept the vehicle is the 'hardware' within the simulation loop. Furthermore, due to the development of software capabilities, a novel approach, the Scenarioin-the-Loop (SciL) concept evolves based on the ViL approach. The paper defines the main purposes and conditions related to implementing ViL and SciL concepts from the perspective of traffic simulation and traffic control.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


2018 ◽  
Vol 8 (2) ◽  
pp. 100-111 ◽  
Author(s):  
Maik Friedrich ◽  
Christoph Möhlenbrink

Abstract. Owing to the different approaches for remote tower operation, a standardized set of indicators is needed to evaluate the technical implementations at a task performance level. One of the most influential factors for air traffic control is weather. This article describes the influence of weather metrics on remote tower operations and how to validate them against each other. Weather metrics are essential to the evaluation of different remote controller working positions. Therefore, weather metrics were identified as part of a validation at the Erfurt-Weimar Airport. Air traffic control officers observed weather events at the tower control working position and the remote control working position. The eight participating air traffic control officers answered time-synchronized questionnaires at both workplaces. The questionnaires addressed operationally relevant weather events in the aerodrome. The validation experiment targeted the air traffic control officer’s ability to categorize and judge the same weather event at different workplaces. The results show the potential of standardized indicators for the evaluation of performance and the importance of weather metrics in relation to other evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document