scholarly journals The Colliding Winds of WR 25 in High-resolution X-Rays

2021 ◽  
Vol 915 (2) ◽  
pp. 114
Author(s):  
Pragati Pradhan ◽  
David P. Huenemoerder ◽  
Richard Ignace ◽  
A. M. T. Pollock ◽  
Joy S. Nichols
2016 ◽  
Vol 12 (S329) ◽  
pp. 359-360
Author(s):  
Yaël Nazé ◽  
Gregor Rauw

AbstractIn a massive binary, the strong shock between the stellar winds may lead to the generation of bright X-ray emission. While this phenomenon was detected decades ago, the detailed study of this emission was only made possible by the current generation of X-ray observatories. Through dedicated monitoring and observations at high resolution, unprecedented information was revealed, putting strong constraints on the amount and structure of stellar mass-loss.


2016 ◽  
Vol 23 (1) ◽  
pp. 214-218 ◽  
Author(s):  
G. Bortel ◽  
G. Faigel ◽  
M. Tegze ◽  
A. Chumakov

Kossel line patterns contain information on the crystalline structure, such as the magnitude and the phase of Bragg reflections. For technical reasons, most of these patterns are obtained using electron beam excitation, which leads to surface sensitivity that limits the spatial extent of the structural information. To obtain the atomic structure in bulk volumes, X-rays should be used as the excitation radiation. However, there are technical problems, such as the need for high resolution, low noise, large dynamic range, photon counting, two-dimensional pixel detectors and the small spot size of the exciting beam, which have prevented the widespread use of Kossel pattern analysis. Here, an experimental setup is described, which can be used for the measurement of Kossel patterns in a reasonable time and with high resolution to recover structural information.


1998 ◽  
Vol 5 (3) ◽  
pp. 515-517 ◽  
Author(s):  
M. Frank ◽  
C. A. Mears ◽  
S. E. Labov ◽  
L. J. Hiller ◽  
J. B. le Grand ◽  
...  

Experimental results are presented obtained with a cryogenically cooled high-resolution X-ray spectrometer based on a 141 × 141 µm Nb-Al-Al2O3-Al-Nb superconducting tunnel junction (STJ) detector in an SR-XRF demonstration experiment. STJ detectors can operate at count rates approaching those of semiconductor detectors while still providing a significantly better energy resolution for soft X-rays. By measuring fluorescence X-rays from samples containing transition metals and low-Z elements, an FWHM energy resolution of 6–15 eV for X-rays in the energy range 180–1100 eV has been obtained. The results show that, in the near future, STJ detectors may prove very useful in XRF and microanalysis applications.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


1991 ◽  
Vol 01 (03) ◽  
pp. 251-258 ◽  
Author(s):  
M. TERASAWA

K, L, and M X-rays in the wavelengths between 6Å and 130Å generated by the bombardment of 200 keV protons and other heavy ions were measured by means of a wavelength dispersive Bragg’s spectrometer. The X-ray peak intensity was fairly high in general, while the background was very low. The technique was favorably applied to a practical analysis of several light elements (Be, B, C, N, O, and F). Use of moderate-energy heavy ions considering the wavelength selectivity in X-ray generation was effective for the element analysis. The high-resolution spectrometry in the analytical application of ion-induced X-ray generation was found to be useful for the study of fine electronic structure, e.g. satellite and hypersatellite X-ray study, and of the chemical state of materials.


2014 ◽  
Vol 20 (S3) ◽  
pp. 652-653 ◽  
Author(s):  
H. Soltau ◽  
R. Hartmann ◽  
P. Holl ◽  
S. Ihle ◽  
H. Ryll ◽  
...  

2016 ◽  
Vol 23 (6) ◽  
pp. 1462-1473 ◽  
Author(s):  
Sebastian Cartier ◽  
Matias Kagias ◽  
Anna Bergamaschi ◽  
Zhentian Wang ◽  
Roberto Dinapoli ◽  
...  

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor,e.g.inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.


2021 ◽  
Author(s):  
Md Inzamam Ul Haque ◽  
Abhishek K Dubey ◽  
Jacob D Hinkle

Deep learning models have received much attention lately for their ability to achieve expert-level performance on the accurate automated analysis of chest X-rays. Although publicly available chest X-ray datasets include high resolution images, most models are trained on reduced size images due to limitations on GPU memory and training time. As compute capability continues to advance, it will become feasible to train large convolutional neural networks on high-resolution images. This study is based on the publicly available MIMIC-CXR-JPG dataset, comprising 377,110 high resolution chest X-ray images, and provided with 14 labels to the corresponding free-text radiology reports. We find, interestingly, that tasks that require a large receptive field are better suited to downscaled input images, and we verify this qualitatively by inspecting effective receptive fields and class activation maps of trained models. Finally, we show that stacking an ensemble across resolutions outperforms each individual learner at all input resolutions while providing interpretable scale weights, suggesting that multi-scale features are crucially important to information extraction from high-resolution chest X-rays.


Sign in / Sign up

Export Citation Format

Share Document