scholarly journals Blast Cells Count Influences Bleeding Incidence in Acute Leukemia: Preliminary Study in South Kalimantan, Indonesia

2021 ◽  
Vol 9 (B) ◽  
pp. 900-902
Author(s):  
Edward Kurnia Setiawan Limijadi ◽  
Qintani Cantika Ismail ◽  
Dwi Retnoningrum ◽  
Wivina Riza Devi ◽  
Anugrah Riansari

Background: Acute leukemia is a malignant disease involving hematopoietic tissue, characterized by abnormal blood cells in bone marrow or called blast cells. The most common complications of acute leukemia is bleeding. A high percentage of blasts has been reported to increase the risk of bleeding in acute leukemia. Preliminary study was needed to investigate relationship between blast cells count and bleeding incidence in acute leukemia. Methods: Crosssectional study with observasional analytic in 18 adult subjects was conducted from November 2019 to March 2020 in Ulin Hospital Banjarmasin South Kalimantan. The data were taken from medical records of acute leukemia patients who met inclusion and exclusion criterias. Data analysis was using Fisher’s exact test. Results: There were 7 men and 11 women in this study. Blast cells count in peripheral with cut off     <50% was 9 (50%) and ≥50% was 9 (50%). It was same for blast cells count in bone marrow. Both of women and men mostly have bleeding in acute leukemia, and bleeding incidence in women is higher than men. Bleeding condition was happened both in peripheral and bone marrow blast cells count with cut of <50% and ≥50%. Significancy of relationship between blast cells count and bleeding incidence was 0.637. Conclusion: There is no significant between blast cells count and the bleeding incidence in acute leukemia. Another parameters that could be influenced bleeding inceidence need to be investigate in acute leukemia.  

2020 ◽  
Vol 5-6 (215-216) ◽  
pp. 7-14
Author(s):  
Zhansaya Nessipbayeva ◽  
◽  
Minira Bulegenova ◽  
Meruert Karazhanova ◽  
Dina Nurpisova ◽  
...  

Leukemia is a hematopoetic tissue tumor with a primary lesion of the bone marrow, where the morphological substrate is the blast cell. Chromosomal and molecular genetic aberrations play a major role in the acute leukemia pathogenesis, determing the morphological, immunological and clinical features of the disease. Our study was aimed to to analyze retrospectively the structure and frequency of chromosomal aberrations in children with initially diagnosed acute leukemia. Material and methods. Medical histories retrospective analysis of children charged to oncohematology department of the «Scientific Center of Pediatrics and Pediatric Surgery» in Almaty for the period 2015 - 2017 was carried out. 310 histories with primary diagnosed acute leukemia were studied. Results and discussion. Among 310 patients different chromosome aberrations were isolated in 158 patients (51%) during cytogenetic and molecular cytogenetic (in situ hybridization) studies of bone marrow blast cells. A normal karyotype was observed in 102 patients (33%). Conclusion. The lymphoblastic variant of acute leukemia was determined in 75.5%, that indicates its leading role in AL structure among the children of different ages. AML was determined in 22.6% of all OL cases. The most frequent chromosomal rearrangement in ALL patients was blast cell chromosome hyperdiploidy (10,6%) and t(12;21)(p13;q22)/ETV6-RUNX1,which was detected in 37 (16%) patients. The most frequent AML abberation was t (8;21) (q22;q22)/RUNX1-RUNX1T1, identified in 15 (21.4%) patients. Keywords: acute leukemia, bone marrow, blast cells, karyotype, chromosomal aberrations, cytogenetic study.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2533-2533 ◽  
Author(s):  
Qian Liu ◽  
Mangju Wang ◽  
Yang Hu ◽  
Haizhou Xing ◽  
Xue Chen ◽  
...  

Abstract Abstract 2533 CD71 (transferring receptor 1) is an integral membrane glycoprotein that plays an important role in cellular uptake of iron. It is well known as a marker for cell proliferation and activation. Although all proliferating cells in hematopoietic system express CD71, however, CD71 has been considered as a useful erythroid-associated antigen. The expression proportion on nucleated red blood cells was significantly higher than other cells, approximately 80% of all CD71 positive cells were of CD71 positive erythroid cells in normal bone marrow. CD71 was usually considered as the representative marker for differentiating erythroblasts and diagnosing acute erythroid leukemia (AEL) by flow cytometry. At the ISAC 2000 Congress, most experts agreed that at least one or more B, T, myeloid, erythroid and megakaryocytic reagents should be included in the essential panel. The reagents recommended for erythroid cells included CD36, CD71 and glycophorin A (GlyA). However, there was no agreement on how to choose and group these antibodies. In the practical analysis of immune phenotypes of leukemic cells we noted that no CD71 expression was detected on blasts of some cases of AEL with typical morphological and cytochemical findings, but other types of acute myeloblastic leukemia (AML) cells may express CD71. Thus, we speculated that CD71 expression may associate with the abnormal antigen expression resulting from hematopoietic disorders. In this study, we evaluated CD71 expression on different acute leukemia cells in association with a variety of other antibodies. In this study we aimed to define CD71 as a flow cytometric marker for the diagnosis of acute leukemia. Bone marrow samples were collected from 82 newly diagnosed acute leukemia patients as well as 13 normal controls. The diagnosis were made according to the WHO 2008 diagnostic criteria. All 6 cases of AEL were erythroid/myeloid subtype (acute erythroid/myeloid leukemia, M6a). The samples were then analyzed using a four-color flow cytometer with antibody panels against a variety of lymphoid, myelomonocytic, erythroid and megakaryocytic antigens. The antibodies included anti-CD3, CD7, CD10, CD11b, CD13, CD14, CD15, CD16, CD19, CD20, CD33, CD34, CD45, CD56, CD61, CD64, CD71, CD117, GlyA, HLA-DR, IgG, IgM, MPO. Subpopulations of bone marrow cells were gated based on CD45 intensities and side scatter (SSC) value to further analyze the expression of antigens in different cell populations. Positive CD71 expression were identified on bone marrow blast cells of 41 (50%) acute leukemia patients and 9 (69.23%) normal controls. The mean expression level on normal controls was 35.99±19.06%. The mean CD71 expression level on blasts of AML with blasts differentiation at early stage of myelopoiesis (including FAB-M0/M1/M2/M4) was significantly higher than AML with partial differentiation of leukemic cells (FAB-M3/M5) and acuteB lymphoblastic leukemia (B-ALL) (p<0.05), with the mean expression level of 38.78±26.65%, 13.25±8.75% and 10.12±11.65%, respectively, and the latter two lower than normal controls (p<0.05). The percentage of CD71 expression level on blasts of acute megakaryocytic leukemia (FAB-M7) was 80.16±8.23%, significantly higher than normal controls, partial differentiation of leukemic cells (FAB-M3/M5), and B-ALL (p<0.05). The percentage of CD71 expression level on blasts of mixed lineage leukemia was 49.66±22.69%, significantly higher than B-ALL (p<0.05). Positive CD71 expression was found on bone marrow blast cells of 4 (66.67%) AEL cases, with the mean level percentage of 25.68±11.63% that was significantly lower than acute megakaryocytic leukemia (FAB-M7) (p<0.05) and was indifferent from normal controls and other types of acute leukemia. Using CD71 expression levels, we identified different abnormal cell clones simultaneously existing within bone marrow of 2 patients of AML with maturation (FAB-M2) and AEL, implicating the clonal evolution process from normal blasts to leukemic cells. CD71 is an important marker for diagnosing acute leukemia, and is useful for distinguishing the differentiation stages of AML. However, CD71 may not be the specific diagnostic marker for AEL. CD71 is also valuable for the observation of clonal evolution process of acute leukemia, which may be informative to the etiology of leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4225-4225
Author(s):  
Rong Fu ◽  
Kai Ding ◽  
Zonghong Shao

Abstract Objective To investigate the expression of PRAME (preferentially expressed antigen of melanoma) gene in acute leukemia and its clinical significance in monitoring prognosis, detecting minimal residual disease (MRD) and gene immunotherapy. Methods The expression of PRAME gene mRNA in bone marrow mononuclear cells is measured by reverse transcriptase polymerase chain reaction in 34 patients with acute leukemia and 12 bone marrow samples of health donors. The relationships between PRAME gene expressions and some clinical data, such as gender, age, white blood count, leukemic immunophenotype, the percentage of blast cells, and the karyotype of chromosome, were also estimated. Results PRAME gene was expressed in 38.2% of all the patients, 40.7% of all the AML patients, which was higher than the 28.6% of ALL patients (p &gt;0.05). There was no expression of PRAME gene in healthy donors. In all the sub phenotypes of AML, the expressive rate of PRAME gene in M3 patients is 80%, which is higher than that in M2 (33.3%) and in M5 (28.6%). The expressive rate of PRAME gene was also positively correlated with the expression of CD15, CD33, and the abnormality in the karyotype of chromosome, but not correlated with age, gender, white blood count and percentage of blast cell in bone marrow. Conclusion PRAME gene is highly expressed in acute leukemia, and could be regarded as a useful tool for monitoring MRD. Differential expression in acute leukemia patients vs. healthy donors suggests that the immunogenic antigens PRAME are potential candidates for immunotherapy in acute leukemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2498-2498
Author(s):  
Grigory Tsaur ◽  
Olga Plekhanova ◽  
Alexander Popov ◽  
Tatyana Gindina ◽  
Yulia Olshanskaya ◽  
...  

Abstract Abstract 2498 Background. MLL gene rearrangements are associated with unfavorable outcome in infant acute lymphoblastic leukemia (ALL) and have intermediate prognosis in infant acute myeloid leukemia (AML). Application of fluorescence in-situ hybridization (FISH) allows detecting not only conventional MLL rearrangements, but also concurrent 3'-deletion of MLL gene. However, detailed characteristics of infant leukemia carrying 3' MLL deletion remain unclear. Aim. To investigate molecular genetic features of MLL-rearranged infant acute leukemia with concurrent 3' MLL deletion. Methods. 64 patients (27 boys and 37 girls) aged from 1 day to 11 months (median 6.6 months) including 44 ALL patients, 18 AML patients, 1 patient with acute bilineage leukemia and 1 patient with acute undifferentiated leukemia were enrolled in the current study. Chromosome banding analysis was done according to standard procedure. FISH analysis using LSI MLL Dual Color, Break Apart Rearrangement Probe (Abbott Molecular, USA) was performed on at least 200 interphase nuclei and on all available metaphases. Presence of MLL rearrangements was detected by FISH, reverse-transcriptase PCR. In 29 cases long-distance inverse PCR was additionally performed. In case of MLL rearrangement presence standard FISH pattern was defined as simultaneous detection of 3 different fluorescent signals: 1 fused (orange) signal, 1 green signal derived from 3' part of MLL gene, 1 red signal from 5' end of MLL (1F1G1R). MLL rearrangements with concurrent 3' MLL deletion led to 1F1R FISH pattern formation due to lack of green signal. Results. FISH revealed MLL rearrangements in 73% of ALL cases that was higher than frequency of 11q23 translocations detected by conventional cytogenetics — 55%. In MLL-positive cases we found 38 patients (81%) with standard FISH pattern, 7 ones (15%) with concurrent 3'-deletion of MLL gene and 2 (4%) with complex MLL rearrangements. Among patients with 3' MLL deletions there were 1 case with 5' MLL duplication (1F2R) and 1 case with 5' MLL triplication (1F3R). Frequency of 3'-deletions were similar in ALL and AML patients (13% and 15%, respectively). We did not find more than one FISH pattern in bone marrow blast cells of each patient with 3' MLL deletion. In this cohort of patients all blast cells carried concurrent 3'-deletion of MLL gene. Moreover, percentage of blast cells carrying MLL rearrangements did not differ significantly between patients with standard FISH pattern (median 97%, range 22–100%) and 3'-deletion (median 83%, range 13–99%) (p=0.206). 3'-deletion of MLL was not associated with breakpoint position in MLL gene and type of translocation partner gene. MLL translocation partner genes detected in patients with 3' deletions were as follows AF4(n=2), MLLT3(n= 3), MLLT10(n=2). None of the patients with 3'-deletions had reciprocal fusion gene. Initial patients' characteristics (age, sex, WBC count, immunophenotype, CNS-status, type of MLL partner gene) and treatment response parameters (day 8 peripheral blood blast cell count, day 15 bone marrow status, day 36 remission achievement, minimal residual disease status at time point 4) did not differ significantly between 2 groups. Although cumulative incidence of relapse was lower in patients with 3'-deletion as compared to patients with standard FISH pattern (0.31±0.04 and 0.55±0.01, respectively), difference between these two groups was not statistically significant (p=0.359). Conclusion. In our work we characterized rare subgroup of infant MLL-rearranged acute leukemia carrying concurrent 3' MLL deletion. Our data provide additional information of molecular genetic features of acute leukemia in children younger than one year. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 307-311 ◽  
Author(s):  
FJ Bot ◽  
P Schipper ◽  
L Broeders ◽  
R Delwel ◽  
K Kaushansky ◽  
...  

The cytokine interleukin-1 (IL-1) plays a role in the regulation of normal as well as leukemic hematopoiesis. In acute myeloid leukemia (AML), IL-1 induces autocrine granulocyte/macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF) production, and these factors may then synergistically induce proliferation in AML blast cells. In this report, we show that IL-1 stimulates DNA synthesis of highly enriched normal bone marrow blast cells (CD34 positive, adherent cell depleted, CD3/CD14/CD15 negative). The stimulative effect of IL-1 can be blocked with neutralizing anti-TNF alpha and anti-GM-CSF antibodies and, most efficiently, by the combination of anti-TNF alpha and anti-GM-CSF, but not with anti-G-CSF antibody, suggesting that IL-1- induced proliferation was initiated through TNF and GM-CSF release. Concentrations of TNF and GM-CSF increased in the culture medium of normal bone marrow blast cells after IL-1 induction. Of the IL-1- induced cells, 12% were positive for GM-CSF mRNA by in situ hybridization, as opposed to 6% of non-induced cells. Thus, in addition to its effect on leukemic blast cells, IL-1 also acts on normal marrow blast cells. We propose a scheme where IL-1 stimulation of normal bone marrow blast cells leads to the induction of TNF alpha and GM-CSF, which in association stimulate DNA synthesis efficiently according to a paracrine or autocrine mechanism within the marrow blast cell compartment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 928-928 ◽  
Author(s):  
Vegi M. Naidu ◽  
Vijay P.S. Rawat ◽  
Christina Schessl ◽  
Konstantin Petropoulus ◽  
Monica Cusan ◽  
...  

Abstract AML1-ETO is the most frequent fusion gene in human AML. Previously, we and others have demonstrated that the fusion is not able to cause leukaemia on its own in experimental murine models, but that it needs collaborative partners. However, although mutations such as the FLT3-length mutation and C-KIT mutations were defined as important collaborative genetic events in AML1-ETO positive AML, most human AML1-ETO cases do not carry these mutations, indicating the presence of unkown collaborative partners in these patients. On the other hand Meis1, a HOX gene co-factor, belonging to the TALE family of homeodomain proteins, has a well established function as a protooncogene with a strong collaborative potential in Hox gene associated AML in mice. First we confirmed expression of MEIS1 in some patients with AML1-ETO positive AML by real-time PCR. Based on this we sought to determine if AML1-ETO can collaborate with Meis1 in inducing acute leukemias: single constructs or both genes were co-transfected in 5-FU treated primary murine bone marrow cells by retroviral gene transfer, using MSCV retroviral constructs with an IRES–GFP or YFP cassette. Mice were transplanted with BM cells expressing Meis1 alone (n=10), with BM cells solely expressing the fusion gene (n=10) or EGFP (n=7, control) or with BM expressing both genetic alterations (n=14). None of the mice in the Meis1 and AML1-ETO as well as in the control group developed disease. In contrast, 14 mice transplanted with BM co-expressing AML1-ETO and Meis1 developed lethal disease after a median latency of 102 days. Three mice succumbed to a myeloproliferative syndrome and nine mice died by acute leukemia (6 mice developed AML, 3 mice ALL), which was serially transplantable into secondary recipients (median = 57 days). Immunohistochemistry of various organs of leukemic mice showed massive infiltration with blast cells. In MPS and AML 85 ± 9.3 % of the blast cells co-expressed Gr-1+ and Mac1+. In ALL cases 40 ± 19.9 % of the malignant cells co-expressed Mac1 and the lymphoid-associated B220 antigen. Analysis of retroviral integration did not reveal recurrent integration sites as an indication for insertional mutagenesis. In summary, our data demonstrate for the first time that AML1-ETO can collaborate with Meis1 and identify a novel collaborative partner in t(8;21) positive AML. Furthermore, our analyses demonstrate that Meis1 can collaborate with non-homeobox genes in inducing acute leukemia.


Blood ◽  
1978 ◽  
Vol 52 (3) ◽  
pp. 578-580 ◽  
Author(s):  
PG Dyment ◽  
EJ Doering ◽  
MJ McHugh

Abstract Aspirations or Jamshidi needle biopsies (n = 287) of bone marrow were performed on children and adolescents with acute leukemia or other malignant disease following the use of a spring-loaded instrument that delivered local anesthetic in a jet spray; 89% of the patients were receiving chemotherapy, 12% were thrombocytopenic, and 23% of the 269 patients who were afebrile at the time of the procedure were severely neutropenic. None of these patients had an infection or a hemorrhage as a complication of the procedure. We conclude that not only is this procedure safe, but it is also much less painful than the traditional method of local anesthetic infiltration using a syringe and needle.


Blood ◽  
1978 ◽  
Vol 52 (3) ◽  
pp. 578-580
Author(s):  
PG Dyment ◽  
EJ Doering ◽  
MJ McHugh

Aspirations or Jamshidi needle biopsies (n = 287) of bone marrow were performed on children and adolescents with acute leukemia or other malignant disease following the use of a spring-loaded instrument that delivered local anesthetic in a jet spray; 89% of the patients were receiving chemotherapy, 12% were thrombocytopenic, and 23% of the 269 patients who were afebrile at the time of the procedure were severely neutropenic. None of these patients had an infection or a hemorrhage as a complication of the procedure. We conclude that not only is this procedure safe, but it is also much less painful than the traditional method of local anesthetic infiltration using a syringe and needle.


Blood ◽  
1984 ◽  
Vol 63 (3) ◽  
pp. 676-683 ◽  
Author(s):  
FM Davis ◽  
WN Hittelman ◽  
KB McCredie ◽  
MJ Keating ◽  
L Vellekoop ◽  
...  

Abstract Tumor burden in adult patients with acute leukemia is assessed using the percentage of blast cells in the bone marrow or blood. It is clear, however, that not all blast cells are leukemic cells, especially during rapid marrow regeneration. Similarly, some leukemia cell lines have been shown to differentiate in vitro, and the same process also occurs in vivo. Therefore, the leukemic burden may be due to more differentiated cells as well as to blast cells. The purpose of this study was to investigate whether the human malignancy-associated nucleolar antigen (HMNA) could be used as a marker for leukemic cells and to examine its potential as a diagnostic tool. The proportion of HMNA-positive cells in the bone marrow of patients with acute leukemia was determined by indirect immunofluorescence with antibodies to HMNA and was compared with the differential counts routinely made in the clinic laboratory. The percentages of HMNA-positive cells among the nucleated cells in the marrow of 72 patients with clinical evidence of leukemia were significantly higher (range 9%-98%, median 83%) than those observed for nonleukemic individuals (range less than 0.05%-2.5%, median 1%) or for fractions of marrow cells from normal volunteers enriched for normal early progenitor cells (less than or equal to 2%). Patients with leukemia in remission had a lower percentage of HMNA- positive cells (range 0%-83%, median 3%). The percentage of HMNA- positive cells increased as patients approached relapse. Although the percentage of HMNA-positive cells was related to the percentage of blast cells in the bone marrow of the patients with leukemia, some partially differentiated cells were also HMNA-positive in some specimens, and some blastic cells were HMNA-negative in other specimens. These studies indicate the potential usefulness of HMNA as a marker for leukemic cells.


Sign in / Sign up

Export Citation Format

Share Document