scholarly journals Contrasting effects of altitude on species groups with different traits in a non-fragmented montane temperate forest

2019 ◽  
Vol 37 ◽  
pp. 99-121 ◽  
Author(s):  
Maarten de Groot ◽  
Al Vrezec

Temperature has strong effects on species composition and traits. These effects can differ within and between species groups. Thermoregulation and mobility are traits which can be strongly affected by altitudinal distribution. Our aim was to investigate the influence of altitude on the species richness, abundance and composition of species groups with different trophic, thermoregulatory and mobility traits. Carabids (Coleoptera; Carabidae), hoverflies (Diptera: Syrphidae) and birds (Aves: Passeriformes) were counted in three altitudinal belts with a total elevation difference of 700 m (from 300 m to 1000 m a.s.l.) in the same habitat type (non-fragmented temperate montane mixed beech and fir forest). We found that endotherms and more mobile species (i.e. birds) had a smaller turnover than ectotherms (i.e. hoverflies) and less mobile species (i.e. carabids), from which we can predict that the former species will undergo a less extreme shift than the latter in global warming scenarios. Species turnover across the altitudinal gradient increased from birds to hoverflies to carabid beetles. The effect of altitude on phenology was different between the studied ectotherm species groups (carabids and hoverflies). Hoverflies experience a phenological delay of species richness and abundance at higher altitudes in spring, but not at the end of summer, which implies that hoverfly phenology is affected by a change in temperature, while carabid beetle abundance exhibited a delay in phenology in summer at higher altitudes. We suggest that species that are expected to be most affected by climate change, such as ectotherms and species with poor dispersal ability should be prioritised as the best indicators for monitoring and conservation management purposes.

Author(s):  
Mauro Gobbi ◽  
Valeria Lencioni

Carabid beetles and chironomid midges are two dominant cold-adapted taxa, respectively on glacier forefiel terrains and in glacial-stream rivers. Although their sensitivity to high altitude climate warming is well known, no studies compare the species assemblages exhibited in glacial systems. Our study compares diversity and distributional patterns of carabids and chironomids in the foreland of the receding Amola glacier in central-eastern Italian Alps. Carabids were sampled by pitfall traps; chironomids by kick sampling in sites located at the same distance from the glacier as the terrestrial ones. The distance from the glacier front was considered as a proxy for time since deglaciation since these variables are positively correlated. We tested if the distance from the glacier front affects: i) the species richness; ii) taxonomic diversity; and iii) species turnover. Carabid species richness and taxonomic diversity increased positively from recently deglaciated sites (those c. 160 m from the glacier front) to sites deglaciated more than 160yrs ago (those located >1300 m from glacier front). Species distributions along the glacier foreland were characterized by mutually exclusive species. Conversely, no pattern in chironomid species richness and turnover was observed. Interestingly, taxonomic diversity increased significantly: closely related species were found near the glacier front, while the most taxonomically diverse species assemblages were found distant from the glacier front. Increasing glacial retreat differently affect epigeic and aquatic insect taxa: carabids respond faster to glacier retreat than do chironomids, at least in species richness and species turnover patterns.


Oecologia ◽  
2020 ◽  
Vol 194 (1-2) ◽  
pp. 205-219
Author(s):  
Ole Petter Laksforsmo Vindstad ◽  
Tone Birkemoe ◽  
Rolf Anker Ims ◽  
Anne Sverdrup-Thygeson

Abstract Successional processes can be observed for many organisms and resources, but most studies of succession have focused on plants. A general framework has been proposed, advocating that successional patterns in species turnover are predominantly driven by competition, dispersal or abiotic limitation, and that the patterning of species accumulation over time gives clues to which process is most influential in a given system. We applied this framework to succession in communities of wood-living beetles, utilizing ephemeral resources in the form of 60 experimentally created dead aspen high stumps. High stumps were created at sun-exposed sites (high ambient temperature; favourable abiotic conditions) and shaded sites (low ambient temperature; abiotically limiting conditions). The sites were intermixed, ensuring similar dispersal opportunities. Beetle species richness and abundance were monitored with flight interception traps over four consecutive years. Consistent with predictions from the tested framework, several beetle functional groups accumulated species more slowly at the unfavourable shaded sites than at the favourable exposed sites. Species richness at the exposed sites increased rapidly to a plateau, consistent with a limiting effect of competition on community development. Similar results were obtained for beetle abundance and community structure. Part of the variance in beetle community structure was jointly explained by habitat and fungal community composition, suggesting that differences in the composition and developmental rate of fungal communities in the two habitats contributed to the observed patterns. Targeted experimental studies are now required to decisively establish what processes underlie the contrasting successional trajectories in the two environments.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Thomas Francis Lado ◽  
David Gwolo Phanuel Mogga ◽  
Richard Angelo Lado Benjamin

The study was carried out to determine patterns of birds’ species richness, alpha and beta diversities; and abundance in Badingilo national park using a 10 m fixed-radius point count method. A total of 2670 individuals were recorded from 182 points in the park. The highest expected number of species (Jack1 estimator) was observed in the Riverine habitat and least was in the Agriculture and Human settlement habitat type. The total number of species observed in the park was 63; however Jack1 estimator indicated that there were 68 species in the park. The majority of the birds observed during the study were resident species, few migratory and Palaearctic bird species. Few birds observed in the park were abundant. The most abundant species was the village weaver (381 individuals), and the rarest species were black-bellied bustard, barn owl, black scimitar bill and tree pipit (one individual each).


2018 ◽  
Author(s):  
Joel Williams ◽  
Alan Jordan ◽  
David Harasti ◽  
Peter Davies ◽  
Tim Ingleton

AbstractThe spatial distribution of a species assemblage is often determined by habitat and climate. In the marine environment, depth can become an important factor as degrading light leads to changes in the biological habitat structure. To date, much of the focus of ecological fish research has been based on reefs in less than 40 m with little research on the ecological role of mesophotic reefs. We deployed baited remote underwater stereo video systems (stereo-BRUVS) on temperate reefs in two depth categories: shallow (20-40m) and mesophotic (80-120m), off Port Stephens, Australia. Sites were selected using data collected by swath acoustic sounder to ensure stereo-BRUVS were deployed on reef. The sounder also provided rugosity, slope and relief data for each stereo-BRUVS deployment. Multivariate analysis indicates that there are significant differences in the fish assemblages between shallow and mesophotic reefs, primarily driven by Ophthalmolepis lineolatus and Notolabrus gymnogenis only occurring on shallow reefs and schooling species of fish that were unique to each depth category: Atypichthys strigatus on shallow reefs and Centroberyx affinis on mesophotic reefs. While shallow reefs had a greater species richness and abundance of fish when compared to mesophotic reefs, mesophotic reefs hosted the same species richness of fishery targeted species. Chrysophrys auratus (pink snapper) and Nemodactylus douglassii (grey morwong) are two highly targeted species in this region. While C. auratus was numerically more abundant on shallow reefs, mesophotic reefs provide habitat for larger fish. In comparison, N. douglassii were evenly distributed across all sites sampled. Generalized linear models revealed that depth and habitat type provided the most parsimonious model for predicting the distribution of C. auratus, while habitat type alone best predicted the distribution of N. douglassii. These results demonstrate the importance of mesophotic reefs to fishery targeted species and therefore have implications for informing the management of these fishery resources on shelf rocky reefs.


2013 ◽  
Vol 145 (1) ◽  
pp. 61-76 ◽  
Author(s):  
Jaime Pinzon ◽  
John R. Spence ◽  
David W. Langor

AbstractSpiders (Araneae) were sampled in white spruce (Picea glauca (Moench) Voss (Pinaceae)) dominated stands from the ground and shrub layers, and from several overstorey strata to assess patterns in species composition and diversity (alpha and beta) along the vertical gradient (0–12 m above ground). Overall, 3070 adult spiders in 15 families and 76 species were collected, with the ground layer accounting for the highest species richness (40 species) followed by the mid-overstorey (36 spp.) and the shrub layers (33 species). Vertical stratification was apparent in the samples: richness clearly decreased with height, and species turnover between the ground, shrub, and mid-overstorey levels was evident, suggesting that species composition in each layer was highly distinctive. Within the mid-overstorey stratification was less obvious but both species richness and spider abundance were predicted significantly by height from the ground and branch size. Given the role of late-seral conifer stands for maintaining old-growth species, understanding diversity patterns across strata provides basic knowledge to support forest management decisions that effectively conserve spider species and assemblages. It is clearly important to include higher canopy layers in considering impacts of forestry on biodiversity in the boreal mixedwood.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Saddan Morales-Saldaña ◽  
Oscar Angel De Luna-Bonilla ◽  
Yareli Joselin Cadena-Rodríguez ◽  
Susana Valencia-A.

Background: The genus Quercus has a keystone role in the temperate forests in the northern hemisphere; thus this offers an interesting opportunity to use it as a model to know altitudinal species richness patterns which could be used in further studies and projects in biodiversity conservation. Questions: It is possible to detect an altitudinal gradient based on the genus Quercus distribution? What climatic variables are most important in the altitudinal distribution of the genus Quercus? Study site: The physiographic province of Sierra Madre del Sur (SMS) located southwest of Mexico. Methods: Based on 3,267 herbarium registers of 61 species, a data matrix was created with the presence/absence of each species in altitudinal intervals of 100 m. Then a similarity matrix was obtained using the Sorensen-Dice index in the R software. Through a discriminant analysis, we evaluated for environmental differences among the altitudinal zones previously obtained through a cluster analysis. Results: We found three altitudinal zones, each one defined by exclusive species, and two important species turnover points. The species richness distribution showed a hump-shaped pattern along the altitudinal gradient. The overall model was highly significant, evidencing the existence of different temperature and precipitation regimes throughout the altitudinal distribution of oaks species in SMS. Conclusions: The altitudinal distribution of oak species in the SMS is not homogeneous and is restricted mainly due to differences in the precipitation and temperature regimes. The altitudinal distribution pattern found in this study could be explained considering ecological and historical factors.


Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 89
Author(s):  
Joo Myun Park ◽  
Seok Nam Kwak ◽  
Ralf Riedel

Decapod assemblages in Zostera marina beds from two bays adjacent to unvegetated habitats were investigated to assess their influence on decapod assemblages. Thirty-eight decapod species belonging to four taxa were collected using a small beam trawl at four habitat types from two different locations off the coast of Namhae Island, South Korea. Dominant decapod taxon at all habitats was the caridean shrimps, with Eualus leptognathus, Heptacarpus pandaloides, Latreutes anoplonyx, La. Laminirostris, and Palaemon macrodactylus being the most abundant caridean species. Crabs were characterized with the highest biomass, but with moderate species richness and abundance. Penaeoid and sergestoid shrimps only accounted for <1% of the total decapod abundance. The number of species and their abundance of decapod assemblages varied greatly by habitat type, season, and diel patterns, but not diversity. Species number and abundance peaked in seagrass beds of southern exposed bays during the autumn and were lowest in unvegetated habitats during the summer months. Diel decapod catch rates were higher at night. Dense seagrass vegetation and nighttime supported higher decapod mean densities, but not species richness and diversity. Multivariate analyses revealed that habitat type and season significantly affected the structure of decapod assemblages, but diel patterns had a minor influence. Among decapod species, Pa. macrodactylus and Pugettia quadridens characterized the decapod assemblages in seagrass beds at the northern semi-closed bay, while Telmessus acutidens, Crangon affinis, Cr. hakodatei, Charybdis (Charybdis) japonica, and Portunus sanguinolentus were significantly associated with both vegetated and unvegetated habitats at the southern exposed bay, with the former two species more abundant during the colder season.


2014 ◽  
Vol 41 (2) ◽  
pp. 149 ◽  
Author(s):  
Heather M. McGinness ◽  
Anthony D. Arthur ◽  
Keith A. Ward ◽  
Paula A. Ward

Context Frog species are now targets for delivery of high-value managed environmental flows on floodplains. Information on the drivers of frog presence and abundance is required to support adaptive management, including analysis of the roles of flood frequency, flood timing and habitat type. Aims This paper describes frog species richness and abundance responses to flooding and habitat type in the Barmah Forest, part of the largest river red gum forest in the world. Methods Surveys were conducted at 22 sites over 6 years, to determine species presence, relative abundance, and evidence of breeding. Data were then used to examine temporal patterns within and between wet and dry years and spatial relationships with site geomorphology, vegetation form and wetting frequency. Key results Six species were common and widespread, and three were rare. The seasonal timing of peak numbers of calling males differed among species. The seasonal pattern of calling for each species did not differ between wet and dry years; however, significantly lower numbers of frogs were recorded calling in dry years. The number of frogs calling was significantly higher in well vegetated grassy wetlands. Evidence of a positive relationship between wetting frequency and numbers of calling males was found for Limnodynastes fletcheri, Crinia signifera and Limnodynastes dumerilii. The abundance of tadpoles was significantly higher in wet years. Conclusions The seasonal timing of flooding in Barmah Forest will influence the breeding success of individual species with different preferences. Flooding from September to December is required to cover most preferred breeding seasons, but longer durations may be required to maximise recruitment. This, together with regular flooding of well vegetated grassy wetland habitat, will increase the likelihood of species persistence and maximise diversity. Insufficient flooding frequency will result in reduced frog species richness and abundance. Implications Managed flooding is important for frog abundance and species richness. This study emphasises the value of key habitats such as well vegetated grassy wetlands and reinforces the need to make their preservation a priority for management. It has identified knowledge gaps to drive future data collection for improved modelling, including a need for further research on flow-regime change and frog communities.


2013 ◽  
Vol 29 (6) ◽  
pp. 523-529 ◽  
Author(s):  
Denis Lippok ◽  
Florian Walter ◽  
Isabell Hensen ◽  
Stephan G. Beck ◽  
Matthias Schleuning

Abstract:Vast areas of tropical forests have been deforested by human activities, resulting in landscapes comprising forest fragments in matrices of deforested habitats. Soil seed banks (SSB) are essential sources for the regeneration of tropical forests after disturbance. In a fragmented montane landscape in the Bolivian Andes, we investigated SSB in three different habitat types that were associated with different degrees of disturbance, i.e. in forest interior, at forest edges and in deforested habitats. Sampling of habitats was replicated at six sites ranging in altitude from 1950 to 2450 m asl. We extracted seeds from dried soil samples by sieving, classified seeds into morphospecies and size classes, and characterized SSB in terms of density, species richness and composition. We tested effects of disturbance (i.e. habitat type) and altitude on SSB characteristics. Overall, small seeds (<1 mm) dominated SSB (81% of sampled seeds). Seed density and species richness were lowest in deforested habitats, especially in large seeds and distant from adjacent forests (≥20 m), while small-seeded species were most numerous near forest margins. Species turnover between habitats was high. Altitude altered the composition of SSB, but had no effects on seed density and species richness. We conclude that the potential of SSB for natural regeneration of deforested habitats is low and decreases with increasing distance from forest remnants and that forest edges may be eventually invaded by small-seeded species from deforested habitats.


2001 ◽  
Vol 28 (3) ◽  
pp. 247 ◽  
Author(s):  
Rachel Paltridge ◽  
Richard Southgate

Australian deserts are characterised by highly patterned plant productivity and an extremely unpredictable climate. The Tanami Desert in central Australia is dominated by vast sandplains interspersed with more productive habitats such as palaeodrainage lines. During 1996 and 1997 fauna surveys were conducted in two areas of the Tanami Desert to investigate the relative importance of palaeodrainage habitat for fauna under different seasonal conditions. The two areas were at latitudes separated by approximately 400 km, and during the study period the northern study area (Tennant) received considerably more rainfall than the southern study area (Kintore). The species richness and abundance of a range of taxonomic groups were compared between the two study areas and between palaeodrainage habitat and adjacent sandplain habitat. The only significant difference between habitats was that small reptiles were more abundant in sandplain than palaeodrainage habitat. Overall, bilbies, bustards and macropods were significantly more abundant at Tennant than Kintore, but significantly more small mammals were captured at Kintore. In both habitats and areas, capture rates, track counts and species richness of reptiles varied significantly with season. The biomass of invertebrates captured also showed significant temporal fluctuations. Burrowing frogs were active only after rain, and birds showed significant fluctuations in abundance and species richness associated with rainfall. The abundance of small mammals did not vary significantly during this study. Overall, local seasonal conditions were generally more important determinants of the abundance of fauna in the spinifex grasslands of central Australia than was habitat type.


Sign in / Sign up

Export Citation Format

Share Document