scholarly journals Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions

NeoBiota ◽  
2019 ◽  
Vol 50 ◽  
pp. 75-95 ◽  
Author(s):  
Hana Skálová ◽  
Lenka Moravcová ◽  
Jan Čuda ◽  
Petr Pyšek

Despite recent evidence on the important role of seed banks associated with plant invasions, and a large body of literature on invasive annual Impatiens species, little is known about the seed bank characteristics of Impatiens species. To bridge this gap, we conducted a five-year field experiment where we buried seeds of two invasive species (I. glandulifera and I. parviflora) and one native species (I. noli-tangere) across four localities in the Czech Republic, harbouring all three Impatiens species and differing in the environmental conditions. We found that the three Impatiens species differed in the characteristics of their seed banks. Both invasive species had a high seed germination rate of almost 100% in the first year after seed burial, while <50% of seeds of the native I. noli-tangere germinated during this year. In I. parviflora all seeds germinated in the first year after seed burial and later decomposed, i.e. the species had a transient seed bank. For I. glandulifera, the most invasive species, the survival of seeds differed among localities. At the first and second localities, the seeds decomposed in the first year after seed burial; in the third locality the seeds germinated in the second year; and in the fourth one, the seeds still germinated in the fourth year. The native I. noli-tangere formed a short-term persistent seed bank across all localities. Germinating or dormant seeds were found in the third year after burial in all localities, and in one locality the seeds persisted until the fifth year. The germination and dormancy in I. noli-tangere were constrained by low minimum temperatures during winter. In addition, germination was highest at intermediate soil moisture, and the most dormant seeds were recorded in soils with intermediate nitrogen concentration. The germination of I. glandulifera was slightly limited by low soil nitrogen. However, no such effect was found in I. parviflora. We suggest that in the invasive Impatiens species seed resistance to environmental factors and high germination at least partly explain their wide distribution.

2020 ◽  
Vol 13 (3) ◽  
pp. 313-322
Author(s):  
Alejandro Presotto ◽  
Fernando Hernández ◽  
Mauricio Casquero ◽  
Roman Vercellino ◽  
Claudio Pandolfo ◽  
...  

Abstract Aims The ability to form persistent seed banks is one of the best predictors of species’ potential to establish in new ranges. Wild sunflower is native to North America where the formation of persistent seed banks is promoted by disturbance and it plays a key role on the establishment and persistence of native populations. However, the role of the seed banks on the establishment and persistence of invasive populations has not been studied. Here, we evaluated the role of seed bank and disturbance on the establishment and fitness, and seed persistence in the soil in several sunflower biotypes collected in ruderal (wild Helianthus annuus) and agrestal (natural crop–wild hybrid) habitats of Argentina as well as volunteer populations (progeny of commercial cultivars). Methods In a seed-bank experiment, we evaluated emergence, survival to reproduction, survival of emerged seedlings, inflorescences per plant and per plot under disturbed and undisturbed conditions over 2 years; in a seed-burial experiment, we evaluated seed persistence in the soil over four springs (6, 18, 30 and 42 months). Important Findings Overall, seedling emergence was early in the growing season (during winter), and it was promoted by disturbance, especially in the first year. Despite this, the number of inflorescences per plot was similar under both conditions, especially in ruderals. In the second year, emergence from the seed bank was much lower, but the survival rate was higher. In the seed-burial experiment, genetic differences were observed but seeds of ruderals and agrestals persisted up to 42 months while seeds of the volunteer did not persist longer than 6 months. The agrestal biotype showed an intermediate behavior between ruderals and volunteers in both experiments. Our findings showed that wild and crop–wild sunflower can form persistent seed banks outside its native range and that disturbance may facilitate its establishment in new areas.


1992 ◽  
Vol 43 (7) ◽  
pp. 1571 ◽  
Author(s):  
PS Cocks

A mixture of 84 accessions of 12 medic (Medicago) species were sown in two successive years into a two-course pasture/wheat rotation in north Syria. Changes in the size and botanical composition of the seed bank were monitored for two cycles of the rotation. At the end of the first year the seed bank consisted of 550 kg ha-1 (sowing 1) and 330 kg ha-1 (sowing 2) of medic seed. Subsequent grazing reduced these seed banks to 225 kg ha-1 and 255 kg ha-1 respectively, and germination in the following wheat crop further reduced it to 205 kg ha-1 and 150 kg ha-1. The seed banks reached 700 kg ha-1 and 790 kg ha-1 respectively, during the second pasture phase of the rotation. The seedling density of medics in the regenerating pasture was 750 m-2 (sowing 1) and 1120 m-2 (sowing 2). Medics comprised about 95% of the pasture by mid-spring in both phases, the remaining 5% being wheat and broad-leaved weeds. The productivity of regenerating pasture was 5 t ha-1 (sowing 1) and 8 t ha-1 (sowing 2). Only three medic species, M. rotata, M. noeana, and M. rigidula, increased as a proportion of the seedbank. The increase was greatest in the first year, though M. noeana and M. rigidula increased further in the next two years. M. littoralis and M. turbinata, initially unsuccessful, became more successful later, while M. scutellata and M. constricta continued to decline throughout the experiment. There were also appreciable differences in the seed bank of individual accessions of several species. The results are discussed in terms of (a) the grazing strategies required in pasture/wheat rotations, and (b) the use of mixtures to select medics suitable for such rotations.


Botany ◽  
2019 ◽  
Vol 97 (11) ◽  
pp. 639-649 ◽  
Author(s):  
Arvind Bhatt ◽  
Narayana R. Bhat ◽  
Flavio Lozano-Isla ◽  
David Gallacher ◽  
Andrea Santo ◽  
...  

Maintaining a viable seed bank throughout the germination season is considered very important for plant recruitment in desert environments, where environmental conditions are unpredictable. Seeds from fully matured Seidlitzia rosmarinus Bunge ex Boiss and Halothamnus iraqensis Botsch. were collected in December 2016, then April, June, and September 2017 from both soil-surface and aerial seed banks. Both of the species were selected mainly by their capacity to rehabilitate saline coastal sites. Germination was analyzed under two photoperiods (0 or 12 h light per day), with winged or dewinged perianths. Seidlitzia rosmarinus had a shorter seasonal range in comparison with H. iraqensis (6 and 9 months, respectively), and the presence of a winged perianth reduced the germination rate of both species. A permanent winged perianth significantly inhibited the germination rate in both species. In the absence of perianth, the germination registered in December 2016 was mostly 100%, but declined to around 20% in September 2017. Seeds are thus more likely to germinate after scarification from wind mobilization, and do not require burial. Our results show that seeds of both the aerial and soil banks are transitory, and viable only during the winter months. Taken together, the combination of aerial and soil seed banks has greatly facilitated germination asynchrony in their environmentally unpredictable desert habitat.


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 877-887 ◽  
Author(s):  
Ramon G. Leon ◽  
David L. Wright ◽  
James J. Marois

Crop rotation promotes productivity, nutrient cycling, and effective pest management. However, in row-crop systems, rotation is frequently limited to two crops. Adding a third crop, especially a perennial crop, might increase crop-rotation benefits, but concerns about disruption of agricultural and ecological processes preclude grower adoption of a three-crop rotation. The objective of the present research was to determine whether weed seed banks differ between a sod-based rotation (bahiagrass–bahiagrass–peanut–cotton) and a conventional peanut–cotton rotation (peanut–cotton–cotton) and the importance of crop phase in weed seed-bank dynamics in a long-term experiment initiated in 1999 in Florida. Extractable (ESB) and germinable (GSB) seed banks were evaluated at the end of each crop phase in 2012 and 2013, and total weed seed or seedling number, Shannon-Weiner's diversity (H′), richness, and evenness were determined. ESB increased in H′ (36%), richness (29%), and total number of weed seeds (40%) for sod-based compared with conventional rotation, whereas GSB increased 32% in H′, 27% in richness, and 177% in total number of weed seedlings. Crop phase was a determinant factor in the differences between crop rotations. The first year of bahiagrass (B1) exhibited increases in weed seed and seedling number, H′, and richness and had the highest values observed in the sod-based rotation. These increases were transient, and in the second year of bahiagrass (B2), weed numbers and H′ decreased and reached levels equivalent to those in the conventional peanut–cotton rotation. The B1 phase increased the germinable fraction of the seed bank, compared with the other crop phases, but not the total number of weed seeds as determined by ESB. The increases in H′ and richness in bahiagrass phases were mainly due to grass weed species. However, these grass weed species were not associated with peanut and cotton phases of the sod-based rotation. The results of the present study demonstrated that including bahiagrass as a third crop in a peanut–cotton rotation could increase weed community diversity, mainly by favoring increases in richness and diversity, but the structure and characteristics of the rotation would prevent continuous increases in the weed seed bank that could affect the peanut and cotton phases.


2021 ◽  
Vol 15 (2) ◽  
pp. 437-451
Author(s):  
Ayomiposi Olayinka Akinkuolie ◽  
Rafiu Olugbenga Sanni ◽  
Augustine. O. Isichei ◽  
Samson. O. Oke

The study investigated the composition of native and alien invasive species in soil seed banks of five different vegetation physiognomies in Akure Forest Reserve Ondo State, Nigeria. This was done with a view to determining and providing an insight into the population dynamics of alien, invasive species for subsequent prediction of potential plant population of the extant population. Five distinct sites (Natural forest, Teak plantation, Taungya system, Taungya + Teak + Gmelina and Teak + Gmelina + Pinus Plantation) designated as A, B, C, D and E were selected in the Forest Reserve. Two plots 25 m x 25 m each were selected for sampling in each of the five distinct physiognomies. Five replicates soil samples were randomly collected at 0-15 cm soil depth in dry and rainy seasons in each site and they were subjected to seedlings emergence for six months to determine the density and species composition (natives or aliens and percentage contribution) of the seed bank. The results of the seedling emergence revealed that the seed bank was dominated by herbaceous stems and also the proportion of aliens to natives was low. Analysis of variance revealed that there was no significant difference (P>0.05) in the density of both the aliens and native species in sites A, B and C indicating similarities in the seed bank density of the aliens and natives in the three sites while in sites D and E, there was a significant difference (P<0.05) indicating dissimilarity in the seed bank density of the aliens and natives in the two sites.Keywords: Plant Ecology, Forest, Seedling Emergence, Seed Bank, Alien Species, Conservation.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Itzel Guzmán-Vázquez ◽  
Silvia Castillo-Argüero ◽  
Alma Orozco-Segovia ◽  
Margarita Collazo-Ortega

Background: Soil and aerial seed banks directly affect recruitment in plant populations. Soil banks result as the balance between seed inputs and outputs. Seed bank dynamics vary by species and environmental conditions. Few records on cacti seed banks are available. Questions: What types of seed banks do two cacti genera form in a lava-field reserve? Does seasonality influence the seed bank dynamics? Are inputs and outputs associated to the microenvironment? Studied species: Opuntia tomentosa, O. lassiacantha, Mammillaria haageana subsp. san-angelensis, M. magnimamma. Study site and dates: Xerophytic shrubland in the “Reserva Ecológica del Pedregal de San Ángel” in Mexico City. 2016 to 2018. Methods: We collected soil samples from four microenvironments during the rainy and the dry seasons, searched for seeds and tested their viability. We compared the number of inputs, outputs and viable seed by microenvironment and season. For M. magnimamma, each month we registered fruit maturation and searched for seeds remaining between tubercles. Results: Opuntia seed bank inputs occurred in all microenvironments and in both seasons. Rain favored inputs in hollows by secondary seed dispersal. We registered a large number of outputs caused by germination, granivory and loss of viability. Opuntia seed bank was developed in headland, plain and slope. No Mammillaria seed inputs were found, neither an aerial bank in M. magnimamma. Conclusion: Opuntia seed banks were restricted to microenvironments that provided “safe sites” which stored viable seeds. Mammillaria seed dynamics may hinders recruitment for their populations.


2009 ◽  
Vol 19 (4) ◽  
pp. 241-248 ◽  
Author(s):  
Claudia Rodríguez ◽  
Maria Alice Garcia

AbstractArrowleaf sida (Sida rhombifolia) is a tropical weed that grows in disturbed areas. Its control by hand pulling and mowing are only partially effective because arrowleaf sida is difficult to pull and quickly sprouts after cutting. We studied the seed-bank dynamics ofS. rhombifoliain the region of Campinas, São Paulo State, Brazil for 2 years, following a known number of seeds placed artificially at five burial depths. Predators and pathogens were responsible for the loss ofc.40% of the seeds during the first year of the experiment. The importance of predation declined with depth. Mortality due to fungal attack did not differ among the burial depths, except for seeds placed at the surface (where it was negligible). Seedling emergence only occurred during the first year, after the beginning of the rainy period and when the study area was still free of a dense vegetation cover. Seedlings did not emerge from depths greater than 5 cm. We conclude that seedling emergence and death are significant causes of seed losses from the seed bank ofS. rhombifoliabut their relative importance is highly dependent on depth of burial.


2009 ◽  
Vol 1 (1) ◽  
pp. 29-36
Author(s):  
Samson Olajide OKE ◽  
Olaniran Temitope OLADIPO ◽  
Charlottee Chibuzor NDIRIBE ◽  
Damilare Stephen AKINYEMI ◽  
Olubukola Modupe OJO

The soil seedbank of Tithonia diversifolia, an invasive species which dominates open waste fallowland vegetation was studied. Two different roadside sites which vary in extent of open waste land were selected.The species composition of the established vegetation was assessed in the two diferent sites. Twenty top soil samples were collected at five different distances (15 cm, 30 cm, 45 cm, 60 cm, and 75 cm) inwards away from each main road in dry and rainy seasons and the seed bank composition was determined by greenhouse germination over a 6 month period. The similarity between the composition of the seed bank flora and that of the established vegetation was low. The least and the highest emerged seedlings density was recorded in the 15 metres and 75 metres respectively inwards away from the main road in both seasons. The results of the seedlings emergence is a reflection of the extent of open waste land dominated by the invasive species due to human disturbance (road construction) on both sites. Overall results suggest that the emergence of the species from the soil seed bank may be due to the impact of the invasive species Tithonia diversifolia on other plant species in the study environment.


2021 ◽  
Vol 16 (4) ◽  
Author(s):  
Cynthia Sias ◽  
Bethany R. Wolters ◽  
Mark S. Reiter ◽  
Michael L. Flessner

This review explores ways that cover crops alter soil environmental conditions that can be used to decrease seed survival, maintain weed seed dormancy, and reduce germination cues, thus reducing above-ground weed pressures. Cover crops are grown between cash crops in rotation, and their residues persist into subsequent crops, impacting weed seeds both during and after cover crops’ growth. Compared to no cover crop, cover crops may reduce weed seedling recruitment and density via: i) reducing soil temperature and fluctuations thereof; ii) reducing light availability and altering light quality; and iii) trapping nitrogen in the cover crop, thus making it less soil-available to weeds. In addition, cover crops may provide habitat for above- and below-ground fauna, resulting in increased weed seed predation. The allelopathic nature of some cover crops can also suppress weeds. However, not all effects of cover crops discourage weeds, such as potentially increasing soil oxygen. Furthermore, cover crops can reduce soil moisture while actively growing but conserve soil moisture after termination, resulting in time-dependent effects. Similarly, decaying legume cover crops can release nitrogen into the soil, potentially aiding weeds. The multiplicity of cover crop species and mixtures, differing responses between weed species, environmental conditions, and other factors hampers uniform recommendations and complicates management for producers. But, cover crops that are managed to maximize biomass, do not increase soil nitrogen, and are terminated at or after cash crop planting will have the greatest potential to attenuate the weed seed bank. There are still many questions to be answered, such as if targeting management efforts at the weed seed bank level is agronomically worthwhile. Future research on cover crops and weed management should include measurements of soil seed banks, including dormancy status, predation levels, and germination. Highlights - Cover crops alter the weed seed bank environment, influencing survival, dormancy, and germination. - Weed seed germination may be reduced by decreased temperature and fluctuations thereof, light, and soil nitrogen. - Weed seed germination may be increased by greater soil moisture, soil nitrogen, and oxygen. - Management should maximize cover crop biomass, decrease soil nitrogen, and delay termination for the greatest potential. - Future research should include measurements of weed seed banks, including dormancy status, predation, and germination.


2014 ◽  
Vol 24 (4) ◽  
pp. 293-300 ◽  
Author(s):  
Juan J. Lu ◽  
Dun Y. Tan ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractSeveral studies have compared seed banks of the different morphs of heteromorphic species, but none of them was on an amphi-basicarpic species. Our primary aim was to compare the relative ability of aerial and basal diaspores of an amphi-basicarpic species to form a seed bank. We compared the seed-bank dynamics of basal and aerial diaspores of three populations of the cold-desert annualCeratocarpus arenariusgrowing in the Junggar Desert in north-western China. A 2.5-year experimental garden study compared germination phenology and retention of viability in basal (a) and aerial (c and f) morphs. Aerial morphs formed a modified Thompson and Grime type III seed bank (small proportion of seeds carried over to next year) and the basal morph a modified type IV seed bank (large proportion of seeds carried over to next year). Seeds germinated only in spring, and cumulative germination percentages were f>c>a (year 1), f = c>a (year 2) and f = c = a (year 3). The relationship between length of germination period, retention of viability during burial and relative ability to form a persistent seed bank was basal morph > aerial morphs. The results of this seed-bank study onC. arenariusare in full agreement with those published previously on seed dispersal and dormancy in this species. Thus, strong additional support is provided for a high risk–low risk germination strategy in this cold-desert annual.


Sign in / Sign up

Export Citation Format

Share Document