scholarly journals In-vitro anti-diabetic activity and in-silico studies of binding energies of palmatine with alpha-amylase, alpha-glucosidase and DPP-IV enzymes

Pharmacia ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 363-371
Author(s):  
Patrick Okechukwu ◽  
Mridula Sharma ◽  
Wen Hui Tan ◽  
Hor Kuan Chan ◽  
Kavita Chirara ◽  
...  

Palmatine a protoberberine alkaloid has been previously reported to possess in vivo antidiabetic and antioxidant property. The aim of the experiment is to evaluate the in vitro antidiabetic activity and in-silico studies of the binding energies of Palmatine, acarbose, and Sitagliptin with the three enzymes of alpha-amylase, alpha-glucosidase, and dipeptidyl peptidase-IV (DPP-IV). The in vitro antidiabetic study was done by evaluating the inhibitory effect of palmatine on the activities of alpha-amylase, alpha-glucosidase, and DPP-IV. Acarbose, and sitagliptin was used as standard drug. The molecular docking study was performed to study the binding interactions of palmatine with alpha-glucosidase, a-amylase, and DPP-IV. The binding interactions were compared with the standard compounds Sitagliptin and acarbose. Palmatine with IC50 (1.31 ± 0.27 µM) showed significant difference of (< 0.0001) higher inhibiting effect on alpha-amylase and weak inhibiting effect on alpha-glucosidase enzyme with IC50 (9.39 ± 0.27 µM) and DPP-IV with IC50 (8.7 ± 1.82 µM). Palmatine possess inhibition effect on the three enzymes.

2021 ◽  
Vol 18 (21) ◽  
pp. 35
Author(s):  
Manuel Rodrigues ◽  
Basavaraju Bennehalli ◽  
Vagdevi Hosadu Manjappaiah ◽  
Shruthi Anantha

In the present study, a set of different benzoxazole derivatives has been synthesized from ethyl acetoacetate, ethoxymethylene malononitrile, NaNO2, and organic acids. Analytical instruments like proton NMR (1H), carbon NMR (13C), infrared spectroscopy (IR), and LC-MS mass spectrometry were used for structural characterization. Synthesized molecules were evaluated for In-vitro antioxidant property (DPPH assay, Total antioxidant & reducing power method) and anti-diabetic property (alpha-amylase & alpha-glucosidase assay). In silico, studies against Human pancreatic alpha-amylase (PDB ID: 3BAW) have been carried out to get the binding approach of the ligand towards the protein. The results demonstrated that compounds namely 5b, 6b, 3b and 4b had potent antioxidant and anti-diabetic activity compared with ascorbic acid and acarbose. HIGHLIGHTS Anti-oxidant (DPPH assay, Total antioxidant and Reducing power) and Anti-diabetic (alpha-amylase & alpha-glucosidase assay) activities performed for synthesized molecules Sulfonamide substitutions are more potent towards biological activities In silico docking studies correlate with in vitro studies The small three-dimensional, stable structure and its ability to form hydrogen bonding the molecules show good activity towards antioxidant and anti-diabetic GRAPHICAL ABSTRACT


Author(s):  
Jirawat Riyaphan ◽  
Chien-Hung Jhong ◽  
May-Jwan Tsai ◽  
Der-Nan Lee ◽  
Max K. Leong ◽  
...  

The inhibition of alpha-glucosidase and alpha-amylase is one of clinic strategies for remedy the type II diabetes. Herbal medicines are reported to alleviate hyperglycemia. However, the constituents from those sources whether are targeted to the alpha-glucosidase and alpha-amylase still unexplored. This study attempted to select the compounds for efficacy of hypoglycemia via cellular and mouse levels. The results illustrated that the cytotoxicity in all tested compounds at various concentrations except the concentration of 16-hydroxy-cleroda-3,13-dine-16,15-olide (HCD) at 30 µM were not significant difference (p > 0.05) when compared with the untreated control. Acarbose (reference drug), Antroquinonol, Catechin, Quercetin, Actinodaphnine, Curcumin, HCD, Docosanol, Tetracosanol, Berberine, and Rutin could effectively inhibit the alpha-glucosidase activity of Caco-2 cells when compared with the control (maltose). The compounds (Curcumin, HCD, Tetracosanol, Antroquinonol, Berberine, Catechin, Actinodaphnine, and Rutin) could reduce blood sugar level at 30 min in tested mice. The effects of tested compounds on area under curve (AUC) were significant (p < 0.05) among Acarbose, Tetracosanol, Antroquinonol, Catechin, Actinodaphnine, and Rutin along with Berberine and Quercetin. In in vitro (alpha-glucosidase) with in vivo (alpha-amylase) experiments suggest that bioactive compounds can be a potential inhibitor candidate of alpha-glucosidase and alpha-amylase for the alleviation of type II diabetes.


Author(s):  
Anurag Verma ◽  
Piyush Mittal ◽  
Milind S. Pande ◽  
Neelanchal Trivedi

Nipah Virus is a zoo tonic virus and has re-emerged again with more deadliness. NiV has infected many animals and humans worldwide and a huge loss to life has been faced. NiV contains a Fusion protein on its outer membrane which helps in the virus entry into the host cell. This fusion protein is a virulent factor and is a major anti-viral target. Many medicinal plants have been used against viral diseases, current research aims towards the potential of three daily dietary food elements that can be used as an anti-viral agent. In-silico studies are performed with 4-hyroxypanduratin A, 6-gingerol and Luteolin against the NiV-F and binding energies were calculated. It was reported that these phyto-compounds have good negative binding energies and they have the promising potential against Nipah Virus. Further in-vitro research can be performed with these phyto-compounds to design a specific drug against Nipah Virus.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 207 ◽  
Author(s):  
Anand-Krishna Singh ◽  
Pankaj Kumar Patel ◽  
Komal Choudhary ◽  
Jaya Joshi ◽  
Dhananjay Yadav ◽  
...  

Quercetin and coumarin, two naturally occurring phytochemicals of plant origin, are known to regulate hyperglycemia and oxidative stress. The present study was designed to evaluate the inhibitory activity of quercetin and coumarin on dipeptidyl peptidase-IV (DPP-IV) and their antioxidant potential. DPP-IV inhibition assays were performed, and evaluated IC50 values of diprotin A, quercetin, coumarin, and sitagliptin were found to be 0.653, 4.02, 54.83, and 5.49 nmol/mL, respectively. Furthermore, in silico studies such as the drug-likeliness and docking efficiency of quercetin and coumarin to the DPP-IV protein were performed; the ex vivo antiperoxidative potential of quercetin and coumarin were also evaluated. The results of the present study showed that the DPP-IV inhibitory potential of quercetin was slightly higher than that of sitagliptin. Virtual docking revealed the tight binding of quercetin with DPP-IV protein. Quercetin and coumarin reduced oxidative stress in vitro and ex vivo systems. We report for the first time that both compounds inhibited the DPP-IV along with antioxidant activity and thus may be use as function food ingredients in the prevention of diabetes.


2020 ◽  
Vol 11 (2) ◽  
pp. 9629-9637

In ’today’s generation, Diabetes mellitus is a very common lifestyle-based disease in which an insufficient amount of insulin is produced, which results in a rise of glucose level in the body with frequent urination and patient feels thirsty and hungry. In our present work, we have used the alpha-glucosidase receptor against the natural plant product as a ligand for docking studies. For this in silico studies, various online tools, databases, and software were used. The proposed approaches were PDB, Molinspiration, Chemsketch, PyRx software, and many more. The binding scores were retrieved by PyRx software and no tumorigenicity, mutagenicity was there, and all parameters were in the desired range. The compounds used as ligands have shown energy minimization up to -6.7 to -8.7 kcal and can be further used as optimization, simulation, and in vitro and in vivo experimental validation.


Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


2021 ◽  
Vol 18 ◽  
Author(s):  
Imen Khelifi ◽  
Audrey Tourrette ◽  
Daycem Khelifi ◽  
Thomas Efferth ◽  
El Akrem Hayouni ◽  
...  

Background: 1,4-Naphthoquinones (1,4-NQs) are secondary plant metabolites with numerous biological activities. 1,4-NQs display low water solubility and poor bioavailability. Bigels are a new technology with great potential, which are designated as drug delivery systems. Biphasic bigels consisting of solid and liquid components represent suitable formulations improving the diffusion and bioavailability of NQs into the skin. Objective: We evaluated the in silico and in vitro activity of 5,8-dihydroxy-1,4-naphthoquinone (M1) and 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (M2) on elastase and assessed their cytotoxicity towards COLO38 melanoma cells. The 1,4-NQs were loaded into bigels for topical application. Methods: Molecular docking was performed, and cytotoxicity was evaluated on COLO38 cells using the resazurin assay. M1 and M2 were separately incorporated into bigels consisting of hydrogel organogel with sweet almond oil as a non-polar solvent and span 65 as organogelator. Their rheological behavior and microscopic properties were characterized. The diffusion kinetics and permeation of 1,4-NQs from bigels were studied by a paddle-over-extraction cell and a “Franz cell” in vitro permeation model. Results: Molecular docking data predicted high interactions between elastase and ligands. Hydrogen bonds to LYS233 were observed for M1, M2, and phosphoramidon (positive control). The average binding energies were -8.5 and -9.7 kcal/mol for M1 and M2 and -12.6 kcal/mol for phosphoramidon. M1 and M2 inhibited the elastase activity by 58.9 and 56.6%, respectively. M1 and M2 were cytotoxic towards COLO38 cells (IC50: 2.6 and 9.8 µM) y. The M1 release from bigels was faster and more efficient than that of M2. Conclusion: M1 and M2 are promising for skin disease treatment. Biphasic organogel-hydrogel bigels are efficient and safe formulations to overcome their low bioavailability.


Author(s):  
Saranya Sivaraj ◽  
Gomathi Kannayiram ◽  
Gayathri Dasararaju

Objective: This study is aimed to evaluate the anti-diabetic effect of sequentially extracted (hexane, dichloromethane, ethyl acetate, and ethanol) Myristica fragrans houtt (mace) through in vitro and in silico studies. Methods: The in vitro anti-diabetic effect of the sequentially extracted plant were evaluated for its alpha-amylase inhibitory activity and the potential binding was studied by in silico studies using Schrödinger Maestro.Results: All extracts showed dose dependent alpha-amylase inhibitory effect. At concentration 500 µg/ml, all the extracts showed more than 60% inhibition of the alpha-amylase enzyme and the highest inhibition (81.30%) at 500 µg/ml was observed in DCM extract of mace. Potential compounds were identified by in silico molecular docking studies of alpha-amylase with phytocomponents from DCM extract. Among the top three compounds from virtual screening, induced fit docking studies revealed 2,5-bis(3,4-dimethoxyphenyl)-3,4-dimethyloxolane possessed better binding affinity when compared with the drug metformin. Conclusion: The obtained in vitro and in silico results suggest that all extracts of Myristica fragrans can be used successfully for the management of diabetes mellitus.Keywords: Myristica fragrans, Mace, Sequential extraction, Alpha-amylase, Molecular docking.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1818
Author(s):  
Ashraf Ahmed Qurtam ◽  
Hamza Mechchate ◽  
Imane Es-safi ◽  
Mohammed Al-zharani ◽  
Fahd A. Nasr ◽  
...  

Citrus fruits and juices have been studied extensively for their potential involvement in the prevention of various diseases. Flavanones, the characteristic polyphenols of citrus species, are the primarily compounds responsible for these studied health benefits. Using in silico and in vitro methods, we are exploring the possible antidiabetic action of narirutin, a flavanone family member. The goal of the in silico research was to anticipate how narirutin would interact with eight distinct receptors implicated in diabetes control and complications, namely, dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), alpha-amylase (AAM), peroxisome proliferator-activated receptor gamma (PPAR-γ), alpha-glucosidase (AGL), while the in vitro study looked into narirutin’s possible inhibitory impact on alpha-amylase and alpha-glucosidase. The results indicate that the studied citrus flavanone interacted remarkably with most of the receptors and had an excellent inhibitory activity during the in vitro tests suggesting its potent role among the different constituent of the citrus compounds in the management of diabetes and also its complications.


2021 ◽  
pp. 187-202
Author(s):  
Mohammad Arif Pasha ◽  
Sumanta Mondal ◽  
Naresh Panigrahi

A simple and efficient method for the synthesis of fifteen novel ketene dithioacetals (2-(6-amino5-cyano-4-aryl-4H-1,3-dithiin-2-ylidene) malononitrile) via a one-pot three-component reaction of activated methylene group malononitrile with carbon disulfide in the presence of arylidene malononitriles were reported. The effects of LiOH.H2O as a base at different concentrations have been investigated and can provide products in good yields at 40-50ºC temperature (54-89%). All the synthesized ketene dithioacetals compounds (MCB1-MCB15) were checked for favorable pharmacokinetic param¬eters along with toxicities which are based on drug-likeness explained by Lipinski’s rule of five by Med chem designer software correlated with that of pkCSM online tool. Explorations of synthesized ketene dithioacetals compounds for the antimicrobial study were found to be effective towards Staphylococcus aureus (MCB5 and MCB13) with a zone of inhibition at 26mm and 22mm which is compared to that of standard ciprofloxacin (26mm). This made our study to explore the inhibition mechanism with the help of molecular docking studies with possible binding energies (-6.4 to -8.9 kJ/mol) by pyrx 0.8 software to represent a good prediction of interactions between the ligand and protein (2XCT). Further evaluation of druggability and ADMET predictions compounds MCB5 and MCB13 were found to be effective. Based on the in-vitro and in-silico studies a series of ketene dithioacetals compounds may be helpful for further studying SAR and designing more potent antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document