scholarly journals Determination of inulin in the herbal mixtures by GC-MS method

Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 181-187
Author(s):  
Alona Savych ◽  
Svetlana Marchyshyn ◽  
Halyna Kozyr ◽  
Nadiya Yarema

The herbal mixtures due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. The carbohydrates, especially inulin, deserve the particular attention through their hypoglycemic, hypolipidemic, anticholesterolemic and detoxifying activities. The aim of the study was to investigate the content of inulin in the herbal mixtures No. 3, No. 4, No. 7, No. 13 and No. 19, which are used in folk medicine for the prevention and treatment of diabetes mellitus type 2 in Ukraine. The quantity content of inulin was defined by the difference between fructose as a product of enzymatic hydrolysis and fructose, a constituent of sucrose and free fructose, taking into account the empirical factor for the conversion of fructose from inulin. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. According to the results, the herbal mixture No. 3 contains 458.97 mg/g of inulin, the herbal mixture No. 4 – 99.21 mg/g, the herbal mixture No. 7 – 139.93 mg/g, the herbal mixture No. 13 – 203.84 mg/g, the herbal mixture No. 19 – 359.65 mg/g. The availability of inulin and its high content in the investigated herbal mixtures due to the presence of inulin-containing medicinal plants, such as Cichorium intubus roots (mixtures No. 3 and No. 13), Taraxacum officinale roots (mixtures No. 3, No. 7 and No. 19), Arctium lappa roots (mixture No. 4), Inula helenium rhizome with roots (mixture No. 7).

Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 721-730
Author(s):  
Alona Savych ◽  
Maryna Duchenko ◽  
Yulia Shepeta ◽  
Alexandra Davidenko ◽  
Olha Polonets

Medicinal plants and their combinations due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. One of such combinations is an antidiabetic herbal mixture (Urticae folia, Rosae frucrus, Myrtilli folia, Menthae folia and Taraxaci radices) with established hypoglycemic, hypolipidemic, antioxidant, hepatoprotective, pancreatoprotective activity in previous pharmacological study in vivo. Thus, the aim of this study was to identify and establish the content of carbohydrates in free and bound form in the plant components of antidiabetic herbal mixture. The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and polyalcohols. The results of the quantitative study showed that the predominant carbohydrate in free form was saccharose in Urticae folia, L-fructose in Myrtilli folia, Rosae frucrus, Taraxaci radices and Menthae folia, L-glucose in Rosae frucrus. Concerning the determination of monomers of polysaccharides after hydrolysis, L-glucose prevailed in all plant components of antidiabetic herbal mixture. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol and myo-inositol.


2021 ◽  
Vol 71 (3) ◽  
pp. 429-443 ◽  
Author(s):  
Alona Savych ◽  
Svitlana Marchyshyn ◽  
Ivanna Milian

AbstractDue to the wide range of biologically active substances, the herbal mixtures can influence the development of diabetes mellitus and its complications. Carbohydrates attract particular attention due to their hypoglycemic, hypolipidemic, anticholesterolemic, antioxidant, antiinflammatory and detoxifying activities. The aim of this study was to investigate the content of carbohydrates through their monomeric composition in the herbal mixture samples: a) Urtica dioica leaf, Cichorium intybus roots, Rosa majalis fruits, Elymys repens rhizome, Taraxacum officinale roots, b) Arctium lappa roots, Elymys repens rhizome, Zea mays columns with stigmas, Helichrysum arenarium flowers, Rosa majalis fruits, c) Inula helenium rhizome with roots, Helichrysi arenarium flowers, Zea mays columns with stigmas, Origanum vulgare herb, Rosa majalis fruits, Taraxacum officinale roots, d) Cichorium intybus roots, Elymys repens rhizome, Helichrysum arenarium flowers, Rosa majalis fruits, Zea mays columns with stigmas and e) Urtica dioica leaf, Taraxacum officinale roots, Vaccinium myrtillus leaf, Rosa majalis fruits, Mentha piperita herb, which were used in Ukrainian folk medicine for the prevention and treatment of diabetes mellitus type 2.The carbohydrates were separated by gas chromatography-mass spectrometry after conversion into volatile aldononitrile acetate derivatives. The monomeric composition of polysaccharides was studied after their hydrolysis to form monosaccharides and poly-alcohols.Quantitative analyses of free carbohydrates showed that the predominant sugars were fructose, glucose and disaccharide – sucrose, in all samples. Concerning the determination of polysaccharide monomers after hydrolysis, glucose was the most abundant in all samples. The chromatographic study revealed a number of polyalcohols that are important for the treatment and prevention of progression of diabetes mellitus and its complications, namely, mannitol, pinitol and myo-inositol.


Pharmacia ◽  
2021 ◽  
Vol 68 (3) ◽  
pp. 527-532
Author(s):  
Alona Savych ◽  
Oksana Bilyk ◽  
Valentina Vaschuk ◽  
Ihor Humeniuk

Herbs and their combinations due to the wide range of biologically active substances can influence on various links of the pathogenetic mechanism of development of diabetes mellitus and its complications. One of such combinations is an antidiabetic herbal mixture with established hypoglycemic, hypolipidemic, antioxidant, hepatoprotective, pancreatoprotective activity in previous pharmacological study in vivo that including an inulin-containing component – Taraxacum officinale L. roots. Thus, the aim of this study was to determine the quantitative content of inulin and fructans in Taraxacum officinale L. Quantity content of inulin was determined by the difference between fructose as a product of enzymatic hydrolysis and D-fructose, a constituent of sucrose and free D-fructose, taking into account the empirical factor for the conversion of D-fructose from inulin. Carbohydrates used in the calculation of inulin were separated by gas chromatography-mass spectrometry after conversion into volatile derivatives as aldononitrile acetate. According to the results, Taraxacum officinale L. roots contain 436.29 mg/g of inulin. Total content of fructans was determined by spectrophotometric analysis as a product of acid hydrolysis of 5-(hydroxymethyl)furfural. The results show that Taraxacum officinale L. roots contain 39.49% of fructans. The obtained results are evidence that this plant component should be included in the herbal antidiabetic mixture, because due to the presence of fructans and inulin causes hypoglycemic, hypolipidemic and detoxification activity.


Separations ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 35
Author(s):  
Jason Hoisington ◽  
Jason S. Herrington

A canister-based sampling method along with preconcentrator-Gas chromatography-Mass Spectrometry (GC-MS) analysis was applied to ethylene oxide (EtO or EO) and 75 other volatile organic compounds (VOCs) in ambient air. Ambient air can contain a large variety of VOCs, and thorough analysis requires non-discriminatory sampling and a chromatographic method capable of resolving a complex mixture. Canister collection of whole air samples allows for the collection of a wide range of volatile compounds, while the simultaneous analysis of ethylene oxide and other VOCs allows for faster throughput than separate methods. The method presented is based on US EPA Method TO-15A and allows for the detection of EtO from 18 to 2500 pptv. The method has an average accuracy of 104% and precision of 13% relative standard deviation (RSD), with an instrument run time of 32 min. In addition, a link between canister cleanliness and ethylene oxide growth is observed, and potential mechanisms and cleaning strategies are addressed.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 755-762
Author(s):  
Dora Trifonova ◽  
Anna Gavrilova ◽  
Galina Dyakova ◽  
Genadi Gavrilov ◽  
Maya Yotova ◽  
...  

The focus of the presented study is the in vitro anti-oxidant activity and anti-diabetic potential of water extracts from the following four herbal substances, not traditionally used for treatment of diabetes mellitus – leaves of Sambucus ebulus L. and Prunus mahaleb L., and flowering stems of Cichorium intybus L. and Satureja kitaibelii Wierzb. ex Heuff. The water extracts are obtained through ultrasonication. The extract of S. kitaibelii stands out due to its highest values in all studied indicators – total phenolic content, scavenging potential (DPPH, ABTS) and α-glucosidase inhibitory activity which was six times higher than acarbose. The extract of C. intybus also showed significant α-glucosidase inhibitory activity compared to acarbose. The flowering stems of both species are promising sources of biologically active substances for blood sugar control in diabetes mellitus.


1964 ◽  
Vol 47 (5) ◽  
pp. 903-909
Author(s):  
Lester Hankin ◽  
Alphonse F Wickroski

Abstract A method has been devised for the determination of corn sirup added to processed meat products. The method is based on the quantitative determination of dextrin added to corn sirup. The dextrins are enzymatically hydrolyzed by α-amylase and β-amylase, and maltose is calculated as the difference in CuO2 found by copper reduction between a treated and an untreated aliquot. A correction factor was devised to determine the average amount of dextrin in corn sirup by testing a number of commercial sirups for their dextrin content and subjecting the data to statistical analysis. With this equation the method is applicable to a wide range of sirups. The method also permits the estimation of dextrose added to meats in excess of that included as one of the components of corn sirup.


2013 ◽  
Vol 448-453 ◽  
pp. 359-362
Author(s):  
Mo Jie Sun ◽  
Ling Zhang ◽  
Ruo Kun Jia

Chloral alkali at room temperature Can be quickly converted into chloroform completely, Application of this principle, By Purge and Trap GC/MS method , Determination of the alkali content of chloroform in water before and after the difference, Inverse to get the water content of chloral. NaOH were added to different volumetric flask. It is flask with standard solutions in different concentrations. Aside a certain amount of determination, error is larger. NaOH was injected directly into the injector. This was the method. It completely transformed in Purge and Trap, greatly reduces human error. The linear range is 0.5-20ug/L, the minimum detection limit can reach 0.05ug/L, the relative standard deviation is less than 2.3%, the average recovery was 97.5%. This method is simple and quick,the results are accurate and reliable, which is able to meet the drinking water source in the analytical needs of chloral.


2003 ◽  
Vol 86 (2) ◽  
pp. 412-431 ◽  
Author(s):  
Michelangelo Anastassiades ◽  
Steven J Lehotay ◽  
Darinka Štajnbaher ◽  
Frank J Schenck

Abstract A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid–liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly >95%) and repeatabilities typically <5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in <30 min with approximately $1 (U.S.) of materials per sample.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Valery A. Isidorov ◽  
Róża Bagan ◽  
Lech Szczepaniak ◽  
Izabela Swiecicka

AbstractIn spite of the long history of therapeutic use of buds from different birch species in folk medicine the existing information on their chemical composition is insufficient. The main goal was to develop a method for GC-MS determination of the chemical profile of birch buds as well as their antimicrobial activity. 150 substances of different classes were identified in Betula litwinowii buds. The volatile elements of the buds were mainly represented by sesquiterpene compounds. Ether extracts also contained other biologically active components such as flavonoids and triterpenoids. However, a particular feature of this fraction was the high content of sesquiterpene phenylpropenoids, including esters of ferulic and caffeic acids with caryophyllene-type alcohols that had not been previously found in any biological samples. Apart from carbohydrates, a series of free amino acids were detected in methanol extracts. The antimicrobial activity of the ether extracts of the buds was observed against all of the microorganisms tested, with MIC values from 0.04 to 0.08 mg mL-1 for Gram-positive bacteria and Candida albicans. However, their inhibitory activities against tested Gram-negative bacteria were rather occasional.


Sign in / Sign up

Export Citation Format

Share Document