scholarly journals Natural reward drives the advancement of life

2020 ◽  
Vol 5 ◽  
pp. 1-35
Author(s):  
Owen M. Gilbert

Throughout the history of life on earth, rare and complex innovations have periodically increased the efficiency with which abiotic free energy and biotic resources are converted to biomass and organismal diversity. Such macroevolutionary expansions have increased the total amount of abiotic free energy utilized by life and shaped the earth’s ecosystems. Meanwhile, Darwin’s theory of natural selection assumes a historical, worldwide state of effective resource limitation, which could not possibly be true if life evolved from one or a few original ancestors. In this paper, I analyze the self-contradiction in Darwin’s theory that comes from viewing the world and universe as effectively resource limited. I then extend evolutionary theory to include a second deterministic evolutionary force, natural reward. Natural reward operates on complex inventions produced by natural selection and is analogous to the reward for innovation in human economic systems. I hypothesize that natural reward, when combined with climate change and extinction, leads to the increased innovativeness, or what I call the advancement, of life with time. I then discuss applications of the theory of natural reward to the evolution of evolvability, the apparent sudden appearance of new forms in the fossil record, and human economic evolution. I conclude that the theory of natural reward holds promise as an explanation for the historical advancement of life on earth.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 168 ◽  
Author(s):  
Ferdinando Boero

Natural history is based on observations, whereas modern ecology is mostly based on experiments aimed at testing hypotheses, either in the field or in a computer. Furthermore, experiments often reveal generalities that are taken as norms. Ecology, however, is a historical discipline and history is driven by both regularities (deriving from norms) and irregularities, or contingencies, which occur when norms are broken. If only norms occured, there would be no history. The current disregard for the importance of contingencies and anecdotes is preventing us from understanding ecological history. We need rules and norms, but we also need records about apparently irrelevant things that, in non-linear systems like ecological ones, might become the drivers of change and, thus, the determinants of history. The same arguments also hold in the field of evolutionary biology, with natural selection being the ecological driver of evolutionary change. It is important that scientists are able to publish potentially important observations, particularly those that are unrelated to their current projects that have no sufficient grounds to be framed into a classical eco-evolutionary paper, and could feasibly impact on the history of the systems in which they occurred. A report on any deviation from the norm would be welcome, from the disappearance of species to their sudden appearance in great quantities. Any event that an “expert eye” (i.e. the eye of a naturalist) might judge as potentially important is worth being reported.


2018 ◽  
Author(s):  
Jason Olejarz ◽  
Kamran Kaveh ◽  
Carl Veller ◽  
Martin A. Nowak

AbstractThe evolution of multicellularity was a major transition in the history of life on earth. Conditions under which multicellularity is favored have been studied theoretically and experimentally. But since the construction of a multicellular organism requires multiple rounds of cell division, a natural question is whether these cell divisions should be synchronous or not. We study a simple population model in which there compete simple multicellular organisms that grow either by synchronous or asynchronous cell divisions. We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, and we offer intuition for why these phenotypes are generally not neutral variants of each other.


Author(s):  
Erin Lambert

This conclusion offers a brief commentary on the implications of song, resurrection, and belief for the broader history of the Reformation. It relates the various uses of song by Lutherans (hymn pamphlets), Anabaptists (martyr songs), Dutch Reformed exiles (psalms), and Catholics (motets) to these confessions’ ideas of belief as it concerned resurrection and their understandings of how belief was bound up with the Christian life on earth. In place of a story of the transformation of one conception of Christianity to many different conceptions, this book as a whole suggests that the Reformation might be reconceived as a much more elemental debate about the role that belief was to play in a Christian life.


2021 ◽  
Vol 13 (5) ◽  
pp. 2466
Author(s):  
Tomas Molina ◽  
Ernest Abadal

The Intergovernmental Panel on Climate Change (IPCC) reports on climate change have served to alert both the public and policymakers about the scope of the predicted changes and the effects they would have on natural and economic systems. The first IPCC report was published in 1990, since which time a further four have been produced. The aim of this study was to conduct a content analysis of the IPCC Summaries for Policymakers in order to determine the degree of certainty associated with the statements they contain. For each of the reports we analyzed all statements containing expressions indicating the corresponding level of confidence. The aggregated results show a shift over time towards higher certainty levels, implying a “Call to action” (from 32.8% of statements in IPCC2 to 70.2% in IPCC5). With regard to the international agreements drawn up to tackle climate change, the growing level of confidence expressed in the IPCC Summaries for Policymakers reports might have been a relevant factor in the history of decision making.


2016 ◽  
Vol 16 (1) ◽  
pp. 40-59 ◽  
Author(s):  
Claudio Maccone

AbstractIn two recent papers (Maccone 2013, 2014) as well as in the book (Maccone 2012), this author described the Evolution of life on Earth over the last 3.5 billion years as a lognormal stochastic process in the increasing number of living Species. In (Maccone 2012, 2013), the process used was ‘Geometric Brownian Motion’ (GBM), largely used in Financial Mathematics (Black-Sholes models). The GBM mean value, also called ‘the trend’, always is an exponential in time and this fact corresponds to the so-called ‘Malthusian growth’ typical of population genetics. In (Maccone 2014), the author made an important generalization of his theory by extending it to lognormal stochastic processes having an arbitrary trend mL(t), rather than just a simple exponential trend as the GBM have.The author named ‘Evo-SETI’ (Evolution and SETI) his theory inasmuch as it may be used not only to describe the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. In the Evo-SETI Theory, the life of a living being (let it be a cell or an animal or a human or a Civilization of humans or even an ET Civilization) is represented by a b-lognormal, i.e. a lognormal probability density function starting at a precise instant b (‘birth’) then increasing up to a peak-time p, then decreasing to a senility-time s (the descending inflexion point) and then continuing as a straight line down to the death-time d (‘finite b-lognormal’).(1)Having so said, the present paper describes the further mathematical advances made by this author in 2014–2015, and is divided in two halves: Part One, devoted to new mathematical results about the History of Civilizations as b-lognormals, and(2)Part Two, about the applications of the Evo-SETI Theory to the Molecular Clock, well known to evolutionary geneticists since 50 years: the idea is that our EvoEntropy grows linearly in time just as the molecular clock. (a)Summarizing the new results contained in this paper: In Part One, we start from the History Formulae already given in (Maccone 2012, 2013) and improve them by showing that it is possible to determine the b-lognormal not only by assigning its birth, senility and death, but rather by assigning birth, peak and death (BPD Theorem: no assigned senility). This is precisely what usually happens in History, when the life of a VIP is summarized by giving birth time, death time, and the date of the peak of activity in between them, from which the senility may then be calculated (approximately only, not exactly). One might even conceive a b-scalene (triangle) probability density just centred on these three points (b, p, d) and we derive the relevant equations. As for the uniform distribution between birth and death only, that is clearly the minimal description of someone's life, we compare it with both the b-lognormal and the b-scalene by comparing the Shannon Entropy of each, which is the measure of how much information each of them conveys. Finally we prove that the Central Limit Theorem (CLT) of Statistics becomes a new ‘E-Pluribus-Unum’ Theorem of the Evo-SETI Theory, giving formulae by which it is possible to find the b-lognormal of the History of a Civilization C if the lives of its Citizens Ci are known, even if only in the form of birth and death for the vast majority of the Citizens.(b)In Part Two, we firstly prove the crucial Peak-Locus Theorem for any given trend mL(t) and not just for the GBM exponential. Then we show that the resulting Evo-Entropy grows exactly linearly in time if the trend is the exponential GMB trend.(c)In addition, three Appendixes (online) with all the relevant mathematical proofs are attached to this paper. They are written in the Maxima language, and Maxima is a symbolic manipulator that may be downloaded for free from the web.In conclusion, this paper further increases the huge mathematical spectrum of applications of the Evo-SETI Theory to prepare Humans for the first Contact with an Extra-Terrestrial Civilization.


Paleobiology ◽  
1985 ◽  
Vol 11 (1) ◽  
pp. 120-138 ◽  
Author(s):  
Daniel C. Fisher

Many questions have emerged recently regarding the importance and methodology of analysis of adaptation. Divergent views reflect both problems of definition and more substantive issues of interpretation. Defining the state of adaptation in terms of its contribution to current fitness, rather than origin by natural selection, is essential if natural selection is to be considered anexplanationof adaptation. The context dependency and relativity of fitness apply also to adaptation. Design criteria are essential components of adaptation, but only to the extent that they are subsumed as elements of the causal interactions determining relative reproductive potential. The local, relational, contingent character of adaptation supports only limited reference to improvement. Most long-term patterns of change can be better described as diffusion within a structured design-space than as progressive improvement of design. The analysis of adaptation is part of a broader inquiry into the processes and constraints that control form and the history of changing form. It offers one perspective on how organisms operate on ecological time scales and how their configurations might be maintained or transformed over evolutionary time. Hypotheses concerning adaptation are sometimes tested by reference to predictions concerning the central tendency or trend of some aspect of an anatomical-behavioral system. These can be interpreted with minimal reference to assumptions of optimality if the analysis is viewed in terms of Bayesian inference. However, an alternative and frequently preferable approach to testing relies on limit-oriented predictions. Analysis of adaptation can be visualized as inferring the pattern and nature of interactions comprising the causal plexus that determines fitness. A comprehensive understanding of form and form-change requires that this be integrated with the perspective offered by studies of development, genetics, phylogenetic history, and external perturbations acting on the system.


2015 ◽  
Vol 3 (3) ◽  
pp. 159-162
Author(s):  
Iman D. Johan-Arief, ◽  
Shen H. Lee ◽  
Xin Y. Er ◽  
Ganesh Kasinathan ◽  
Naganathan Pillai

Background: Leptospirosis is an infectious disease caused by the spirochete of the genus leptospira. It is thought to be the most common zoonosis globally and has a wide range of clinical presentations with pulmonary hemorrhage being one of its most severe manifestations. This entity known as acute pulmonary syndrome carries a high fatality rate. However, it can be effectively managed with methylprednisolone therapy. Case: We report a case of leptospirosis in a 26-year-old Bangladeshi male who was otherwise healthy. He presented with a 7-day history of fever with chills and rigors, and hemoptysis for a duration of 2 days. Physical examination revealed a febrile and lethargic man. Respiratory examination exhibited bilateral generalized crepitations over the lung fields. A chest radiograph performed showed bilateral alveolar shadowing. The diagnosis of leptospirosis was made based on positive Immunoglobulin M enzyme-linked immunosorbent assay serology, which was then confirmed by the microscopic agglutination test for leptospirosis. The patient was commenced on intravenous antibiotics and methylprednisolone at this time. He responded well clinically with resolution of fever and hemoptysis and a marked decrease in crepitations upon auscultation. This correlated with radiological improvement evidence by an obvious reduction in alveolar shadowing on subsequent chest radiograph 2 days later. Conclusion: This case is highly pertinent to the medical field as leptospirosis is an ever-growing problem and acute pulmonary syndrome is an emerging manifestation of it. Therefore, early recognition and intervention is required as this can be effectively treated with methylprednisolone therapy even in resource-limited settings


2020 ◽  
Author(s):  
Harris Bernstein ◽  
Carol Bernstein

The early history of life on Earth likely included a stage in which life existed as self-replicating protocells with single-stranded RNA (ssRNA) genomes. In this RNA world, genome damage from a variety of sources (spontaneous hydrolysis, UV, etc.) would have been a problem for survival. Selection pressure for dealing with genome damage would have led to adaptive strategies for mitigating the damage. In today’s world, RNA viruses with ssRNA genomes are common, and these viruses similarly need to cope with genome damage. Thus ssRNA viruses can serve as models for understanding the early evolution of genome repair. As the ssRNA protocells in the early RNA world evolved, the RNA genome likely gave rise, through a series of evolutionary stages, to the double-stranded DNA (dsDNA) genome. In ssRNA to dsDNA evolution, genome repair processes also likely evolved to accommodate this transition. Some of the basic features of ssRNA genome repair appear to have been retained in descendants with dsDNA genomes. In particular, a type of strand-switching recombination occurs when ssRNA replication is blocked by a damage in the template strand. Elements of this process appear to have a central role in recombinational repair processes during meiosis and mitosis of descendant dsDNA organisms.


Sign in / Sign up

Export Citation Format

Share Document