scholarly journals Parasitic copepods (Crustacea, Hexanauplia) on fishes from the lagoon flats of Palmyra Atoll, Central Pacific

ZooKeys ◽  
2019 ◽  
Vol 833 ◽  
pp. 85-106 ◽  
Author(s):  
Lilia C. Soler-Jiménez ◽  
F. Neptalí Morales-Serna ◽  
Ma. Leopoldina Aguirre-Macedo ◽  
John P. Mclaughlin ◽  
Alejandra G. Jaramillo ◽  
...  

We surveyed copepods parasitic on the fishes at Palmyra, a remote atoll in the Central Indo-Pacific faunal region. In total, we collected 849 individual fish, representing 44 species, from the intertidal lagoon flats at Palmyra and recovered 17 parasitic copepod species. The parasitic copepods were:OrbitacolaxwilliamsionMulloidichthysflavolineatus;AnuretesserratusonAcanthurusxanthopterus;CaligusconfususonCarangoidesferdau,Carangoidesorthogrammus,Caranxignobilis,Caranxmelampygus, andCaranxpapuensis;CaliguskapuhilionChaetodonaurigaandChaetodonlunula;CaliguslaticaudusonRhinecanthusaculeatus,Pseudobalistesflavimarginatus,M.flavolineatus,Upeneustaeniopterus,Chrysipteraglauca, andEpinephalusmerra;CaligusmutabilisonLutjanusfulvusandLutjanusmonostigma;CaligusrandallionC.ignobilis;Caligussp. onL.fulvus;CaritusserratusonChanoschanos;LepeophtheiruslewisionA.xanthopterus;LepeophtheirusuluusonC.ignobilis;DissonussimilisonArothronhispidus;Nemesissp. onCarcharhinusmelanopterus;HatschekialongiabdominalisonA.hispidus;HatschekiabicaudataonChaetodonaurigaandChaetodonlunula;KroyerialongicaudaonC.melanopterusandLernanthropussp. onKyphosuscinerascens. All copepod species reported here have been previously reported from the Indo-Pacific but represent new geographical records for Palmyra, demonstrating large-scale parasite dispersion strategies.

2015 ◽  
Vol 17 (1) ◽  
pp. 39-62 ◽  
Author(s):  
Ali Alaş ◽  
Ahmet Öktener ◽  
Dilek Çakir Türker

Abstract This review presents the occurrence of 62 parasitic copepod species from 72 different fish species (64 wild, two cultured, seven from aquarium) from Turkey. The parasite species list is arranged by providing parasite species name, host fish, location of host fish capture and author, date of published record. All parasites and their hosts are confirmed with the recent systematic accounts and full taxonomic account according to literature and internet database. Siphonostomatoida with 47 species and Caligidae with 12 species are the dominant order and family among parasitic copepoda with regard to species diversity, host distribution and location.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 758
Author(s):  
Wayne Yuan-Huai Tsai ◽  
Mong-Ming Lu ◽  
Chung-Hsiung Sui ◽  
Yin-Min Cho

During the austral summer 2018/19, devastating floods occurred over northeast Australia that killed approximately 625,000 head of cattle and inundated over 3000 homes in Townsville. In this paper, the disastrous event was identified as a record-breaking subseasonal peak rainfall event (SPRE). The SPRE was mainly induced by an anomalously strong monsoon depression that was modulated by the convective phases of an MJO and an equatorial Rossby (ER) wave. The ER wave originated from an active equatorial deep convection associated with the El Niño warm sea surface temperatures near the dateline over the central Pacific. Based on the S2S Project Database, we analyzed the extended-range forecast skill of the SPRE from two different perspectives, the monsoon depression represented by an 850-hPa wind shear index and the 15-day accumulated precipitation characterized by the percentile rank (PR) and the ratio to the three-month seasonal (DJF) totals. The results of four S2S models of this study suggest that the monsoon depression can maintain the same level of skill as the short-range (3 days) forecast up to 8–10 days. For precipitation parameters, the conclusions are similar to the monsoon depression. For the 2019 northern Queensland SPRE, the model forecast was, in general, worse than the expectation derived from the hindcast analysis. The clear modulation of the ER wave that enhanced the SPRE monsoon depression circulation and precipitation is suspected as the main cause for the lower forecast skill. The analysis procedure proposed in this study can be applied to analyze the SPREs and their associated large-scale drivers in other regions.


2015 ◽  
Vol 282 (1813) ◽  
pp. 20150603 ◽  
Author(s):  
Shaun S. Killen ◽  
Julie J. H. Nati ◽  
Cory D. Suski

The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus , we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.


1998 ◽  
Vol 15 (1-4) ◽  
pp. 185-206 ◽  
Author(s):  
André Raibaut ◽  
Claude Combes ◽  
Françoise Benoit

2021 ◽  
Vol 126 (17) ◽  
Author(s):  
J.‐L. F. Li ◽  
Kuan‐Man Xu ◽  
Wei‐Liang Lee ◽  
J. H. Jiang ◽  
Eric Fetzer ◽  
...  

2006 ◽  
Vol 134 (12) ◽  
pp. 3567-3587 ◽  
Author(s):  
Linda M. Keller ◽  
Michael C. Morgan ◽  
David D. Houghton ◽  
Ross A. Lazear

Abstract A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182681
Author(s):  
Lorenzo Mari ◽  
Luca Bonaventura ◽  
Andrea Storto ◽  
Paco Melià ◽  
Marino Gatto ◽  
...  

2015 ◽  
Vol 163 ◽  
pp. 23-33 ◽  
Author(s):  
Bruno Leroy ◽  
Simon Nicol ◽  
Antony Lewis ◽  
John Hampton ◽  
Dale Kolody ◽  
...  

2012 ◽  
Vol 51 (4) ◽  
pp. 722-744 ◽  
Author(s):  
I. M. Shiromani Jayawardena ◽  
Yi-Leng Chen ◽  
Andrew J. Nash ◽  
Kevin Kodama

AbstractThe anomalous circulation patterns during an unusually prolonged stormy-weather period in Hawaii from 19 February to 2 April 2006 are analyzed and are compared with those of two previously known prolonged heavy-rainfall periods (March 1951 and February 1979). The circulation patterns for these three periods are characterized by 1) a negative Pacific–North American (PNA) pattern in the midlatitudes with a blocking high southwest of the Aleutian Islands, 2) retraction and splitting of the zonal jet into a polar jet north of 50°N and a persistent subtropical jet to the south over the central Pacific Ocean, 3) an anomalous low west of the Hawaiian Islands embedded in the subtropical jet, and 4) a weaker-than-normal Hadley circulation in the mid-Pacific. The moisture advected from low latitudes by the southerly wind component east of the persistent anomalous low, combined with upward motion, provides the large-scale setting for the unusually prolonged unsettled weather across the Hawaiian Islands. For all three cases, the prolonged stormy weather started after the onset of large-scale blocking and a negative PNA pattern over the North Pacific and the occurrence of a persistent anomalous low embedded in the subtropical jet west of the Hawaiian Islands. Furthermore, the persistent low was located at the optimal position to bring moisture from the central equatorial Pacific to Hawaii. The stormy weather ceased after the midlatitude blocking pattern weakened and the anomalous low in the subtropics decayed and/or shifted westward. There are no apparent common precursors in the 2-week period prior to the prolonged stormy weather among these three cases, however.


2020 ◽  
Author(s):  
D. Alex Burrows ◽  
Craig Ferguson ◽  
Shubhi Agrawal ◽  
Lance Bosart

<p>The United States (U.S.) Great Plains southerly low-level jet (GPLLJ) is a ubiquitous feature of the summertime climatological flow in the central U.S. contributing to a large percentage of mean and extreme summertime rainfall, the generation of vast quantities of U.S. renewable wind energy, and severe weather outbreaks.  Like other LLJs across the globe, the GPLLJ can be 1) vertically coupled to the large-scale cyclone-anticyclone flow pattern associated with an upper-level jet stream or 2) uncoupled to the large-scale flow but sustained in response to various local land-atmosphere coupling mechanisms.  Many studies have focused on the interactions between teleconnection patterns and associated GPLLJ variability, treating the GPLLJ as a singular phenomenon.  Here, we treat the GPLLJ as two phenomena, coupled and uncoupled to the upper-level flow, and explore the multiscale impacts of SST forced and internally generated modes of variability on the GPLLJ.  With mounting evidence for the low-frequency control on higher frequency GPLLJ variability, the current study analyzes the contribution of the Pacific/North America (PNA) pattern on sub-seasonal timescales and ENSO on interannual timescales to changes in the frequency distributions of both coupled and uncoupled GPLLJs.</p><p> </p><p>This analysis utilizes 1) the Coupled ERA 20th Century (CERA-20C; 1901-2010) reanalysis from ECMWF which provides a large sample of teleconnection conditions and their impacts on GPLLJ variability and 2) a recently developed automated technique to differentiate those GPLLJs that are coupled or uncoupled to the upper-level flow.  Many studies have already shown that two distinct synoptic regimes dominate GPLLJ variability, a western U.S. trough and a central U.S. ridge.  This leads to changes in the frequency ratio of coupled and uncoupled GPLLJ events and ultimately in the location and intensity of precipitation across the GP.  Recently, Burrows et al. (2019) showed that during the Dust Bowl period of 1932-1938, the central and northern GP experienced anomalously high (low) uncoupled (coupled) GPLLJ event frequencies that coincided with a multi-year dry period across the entire region.  Understanding the upscale and lower frequency forcing patterns that lead to these distinct synoptic regimes would lead to greater predictability and forecasting skill.  On sub-seasonal timescales, it is shown that the negative phase of the PNA, which is associated with a southerly displaced Pacific jet stream and a western U.S. trough, leads to increases in the frequency of GPLLJs that are coupled to the upper-level flow, increases in Gulf of Mexico moisture flux and a redistribution of GP precipitation.  On interannual timescales, the location of ENSO events, i.e., eastern or central Pacific, is explored to determine the relationship between tropical forced variability and upper-level coupling to the GPLLJ.  In line with recent studies, it is hypothesized that central Pacific ENSO events may lead to increases in coupled GPLLJ events and precipitation, particularly in the southern GP.</p>


Sign in / Sign up

Export Citation Format

Share Document