scholarly journals A hybrid model for the prediction of aluminum foil output thickness in cold rolling process

Author(s):  
ALİ ÖZTÜRK ◽  
RİFAT ŞEHERLİ

This study proposes a hybrid model composed of multiple prediction algorithms and an autoregressive moving average (ARMA) module for the thickness prediction. In order to attain higher accuracy, the prediction algorithms were globally combined by simple voting to reduce the effect of the inductive bias imposed by each algorithm on the dataset. The global multiexpert combination (GMEC) system included the multilayer perceptron neural network (MLPNN), radial basis function network (RBFN), multiple linear regression (MLR), and support vector machines (SVM) algorithms. The proposed hybrid model extends the GMEC system by integrating an ARMA module for the output. On the test dataset, the mean absolute error (MEA) and root mean squared error (RMSE) were better for the hybrid model than the GMEC system. The GMEC system had approximately twice better performance than the MLPNN, which was the best among the learners. The performance was significantly improved via the hybrid model in terms of correlation coefficient (R). The results suggested that the proposed hybrid model can be used for more accurate and precise prediction of aluminum foil output thickness.

2022 ◽  
pp. 306-322
Author(s):  
Mogari Ishmael Rapoo ◽  
Martin M. Chanza ◽  
Gomolemo Motlhwe

This study examines the performance of seasonal autoregressive integrated moving average (SARIMA), multilayer perceptron neural networks (MLPNN), and hybrid SARIMA-MLPNN model(s) in modelling and forecasting inflation rate using the monthly consumer price index (CPI) data from 2010 to 2019 obtained from the South African Reserve Bank (SARB). The forecast errors in inflation rate forecasting are analyzed and compared. The study employed root mean squared error (RMSE) and mean absolute error (MAE) as performance measures. The results indicate that significant improvements in forecasting accuracy are obtained with the hybrid model (SARIMA-MLPNN) compared to the SARIMA and MLPNN. The MLPNN model outperformed the SARIMA model. However, the hybrid SARIMA-MLPNN model outperformed both the SARIMA and MLPNN in terms of forecasting accuracy/accuracy performance.


2021 ◽  
Author(s):  
Emilly Pereira Alves ◽  
Joao Fausto Lorenzato Oliveira ◽  
Manoel Henrique da Nóbrega Marinho ◽  
Francisco Madeiro

In the forecasting time series field, the combination of techniques to aid in predicting different patterns has been the subject of several studies. Hybrid models have been widely applied in this scenario, where the vast majority of series are composed of linear and nonlinear patterns. The Autoregressive Integrated Moving Average (ARIMA) presents satisfactory results in a linear pattern prediction but can not capture nonlinear ones. In dealing with nonlinear patterns, the Support Vector Regression (SVR) has shown promising results. In order to map both patterns, an optimized nonlinear combination model based on SVR and ARIMA is proposed. The main difference in comparison with other works is the use of an interactive Particle Swarm Optimization (PSO) to increase the prediction performance. To the experimental setup, six well-known datasets of the literature is used. The performance is assessed by the metrics Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The results show the proposed system attains better outcomes when compared to the other tested techniques, for most of the used data.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Siraj Muhammed Pandhiani ◽  
Ani Shabri

In this study, new hybrid model is developed by integrating two models, the discrete wavelet transform and least square support vector machine (WLSSVM) model. The hybrid model is then used to measure for monthly stream flow forecasting for two major rivers in Pakistan. The monthly stream flow forecasting results are obtained by applying this model individually to forecast the rivers flow data of the Indus River and Neelum Rivers. The root mean square error (RMSE), mean absolute error (MAE) and the correlation (R) statistics are used for evaluating the accuracy of the WLSSVM, the proposed model. The results are compared with the results obtained through LSSVM. The outcome of such comparison shows that WLSSVM model is more accurate and efficient than LSSVM.


2021 ◽  
Vol 36 (2spl) ◽  
pp. 708-714
Author(s):  
Sayed Mohibul HOSSEN ◽  
◽  
Mohd Tahir ISMAIL ◽  
Mosab I. TABASH ◽  
Ahmed ABOUSAMAK ◽  
...  

Forecasting of potential tourists’ appearance could assume a critical role in the tourism industry, arranging at all levels in both the private and public sectors. In this study our aim to build an econometric model to forecast worldwide visitor streams to Bangladesh. For this purpose, the present investigation focuses on univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling. Model choice criteria were Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (RMSE). As per descriptive statistics, the mean appearances were 207012 and will be 656522 (application) every year. Mean Absolute Deviation and Mean Squared Deviation likewise concurred with MAPE, MAE, and MSE. The result reveals that for sustainable development the SARIMA model is the reasonable model for forecasting universal visitor appearances in Bangladesh.


Author(s):  
Ahmed Hassan Mohammed Hassan ◽  
◽  
Arfan Ali Mohammed Qasem ◽  
Walaa Faisal Mohammed Abdalla ◽  
Omer H. Elhassan

Day by day, the accumulative incidence of COVID-19 is rapidly increasing. After the spread of the Corona epidemic and the death of more than a million people around the world countries, scientists and researchers have tended to conduct research and take advantage of modern technologies to learn machine to help the world to get rid of the Coronavirus (COVID-19) epidemic. To track and predict the disease Machine Learning (ML) can be deployed very effectively. ML techniques have been anticipated in areas that need to identify dangerous negative factors and define their priorities. The significance of a proposed system is to find the predict the number of people infected with COVID19 using ML. Four standard models anticipate COVID-19 prediction, which are Neural Network (NN), Support Vector Machines (SVM), Bayesian Network (BN) and Polynomial Regression (PR). The data utilized to test these models content of number of deaths, newly infected cases, and recoveries in the next 20 days. Five measures parameters were used to evaluate the performance of each model, namely root mean squared error (RMSE), mean squared error (MAE), mean absolute error (MSE), Explained Variance score and r2 score (R2). The significance and value of proposed system auspicious mechanism to anticipate these models for the current cenario of the COVID-19 epidemic. The results showed NN outperformed the other models, while in the available dataset the SVM performs poorly in all the prediction. Reference to our results showed that injuries will increase slightly in the coming days. Also, we find that the results give rise to hope due to the low death rate. For future perspective, case explanation and data amalgamation must be kept up persistently.


2021 ◽  
Vol 5 (3) ◽  
pp. 466-473
Author(s):  
Azam Zamhuri Fuadi ◽  
Irsyad Nashirul Haq ◽  
Edi Leksono

Predicted electricity consumption is needed to perform energy management. Electricity consumption prediction is also very important in the development of intelligent power grids and advanced electrification network information. we implement a Support Vector Machine (SVM) to predict electrical loads and results compared to measurable electrical loads. Laboratory electrical loads have their own characteristics when compared to residential, commercial, or industrial, we use electrical load data in energy management laboratories to be used to be predicted. C and Gamma as searchable parameters use GridSearchCV to get optimal SVM input parameters. Our prediction data is compared to measurement data and is searched for accuracy based on RMSE (Root Square Mean Error), MAE (Mean Absolute Error) and MSE (Mean Squared Error) values. Based on this we get the optimal parameter values C 1e6 and Gamma 2.97e-07, with the result RSME (Root Square Mean Error) ; 0.37, MAE (meaning absolute error); 0.21 and MSE (Mean Squared Error); 0.14.


2021 ◽  
Vol 1 (1) ◽  
pp. 52-65
Author(s):  
Drajat Indra Purnama

ABSTRAKInvestasi emas merupakan salah satu investasi yang menjadi favorit dimasa pandemi Covid 19 seperti sekarang ini. Hal ini dikarenakan harga emas yang nilainya relatif fluktuatif tetapi menunjukkan tren peningkatan. Investor dituntut pandai dalam berinvestasi emas, mampu memprediksi peluang dimasa yang akan datang. Salah satu model peramalan data deret waktu adalah model Autoregressive Integrated Moving Average (ARIMA). Model ARIMA baik digunakan pada data yang berpola linear tetapi jika digunakan pada data data nonlinear keakuratannya menurun. Untuk mengatasi permasalahan data nonlinear dapat menggunakan model Support Vector Regression (SVR). Pengujian linearitas pada data harga emas menunjukkan adanya pola data linear dan nonlinear sekaligus sehingga digunakan kombinasi ARIMA dan SVR yaitu model hybrid ARIMA-SVR. Hasil peramalan menggunakan model hybrid ARIMA-SVR menunjukkan hasil lebih baik dibanding model ARIMA. Hal ini dibuktikan dengan nilai MAPE model hybrid ARIMA-SVR lebih kecil dibandingkan nilai MAPE model ARIMA. Nilai MAPE model hybrid ARIMA-SVR sebesar 0,355 pada data training dan 4,001 pada data testing, sedangkan nilai MAPE model ARIMA sebesar 0,903 pada data training dan 4,076 pada data testing.ABSTRACTGold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254137
Author(s):  
Muhammad Adam Norrulashikin ◽  
Fadhilah Yusof ◽  
Nur Hanani Mohd Hanafiah ◽  
Siti Mariam Norrulashikin

The increasing trend in the number new cases of influenza every year as reported by WHO is concerning, especially in Malaysia. To date, there is no local research under healthcare sector that implements the time series forecasting methods to predict future disease outbreak in Malaysia, specifically influenza. Addressing the problem could increase awareness of the disease and could help healthcare workers to be more prepared in preventing the widespread of the disease. This paper intends to perform a hybrid ARIMA-SVR approach in forecasting monthly influenza cases in Malaysia. Autoregressive Integrated Moving Average (ARIMA) model (using Box-Jenkins method) and Support Vector Regression (SVR) model were used to capture the linear and nonlinear components in the monthly influenza cases, respectively. It was forecasted that the performance of the hybrid model would improve. The data from World Health Organization (WHO) websites consisting of weekly Influenza Serology A cases in Malaysia from the year 2006 until 2019 have been used for this study. The data were recategorized into monthly data. The findings of the study showed that the monthly influenza cases could be efficiently forecasted using three comparator models as all models outperformed the benchmark model (Naïve model). However, SVR with linear kernel produced the lowest values of RMSE and MAE for the test dataset suggesting the best performance out of the other comparators. This suggested that SVR has the potential to produce more consistent results in forecasting future values when compared with ARIMA and the ARIMA-SVR hybrid model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mei-Ling Cheng ◽  
Ching-Wu Chu ◽  
Hsiu-Li Hsu

PurposeThis paper aims to compare different univariate forecasting methods to provide a more accurate short-term forecasting model on the crude oil price for rendering a reference to manages.Design/methodology/approachSix different univariate methods, namely the classical decomposition model, the trigonometric regression model, the regression model with seasonal dummy variables, the grey forecast, the hybrid grey model and the seasonal autoregressive integrated moving average (SARIMA), have been used.FindingsThe authors found that the grey forecast is a reliable forecasting method for crude oil prices.Originality/valueThe contribution of this research study is using a small size of data and comparing the forecasting results of the six univariate methods. Three commonly used evaluation criteria, mean absolute error (MAE), root mean squared error (RMSE) and mean absolute percent error (MAPE), were adopted to evaluate the model performance. The outcome of this work can help predict the crude oil price.


2021 ◽  
Author(s):  
Drajat Indra Purnama

Gold investment is one of the favorite investments during the Covid 19 pandemic as it is today. This is because the price of gold is relatively volatile but shows an increasing trend. Investors are required to be smart in investing in gold, able to predict future opportunities. One of the time series data forecasting models is the Autoregressive Integrated Moving Average (ARIMA) model. The ARIMA model is good for use on linear patterned data but if it is used on nonlinear data the accuracy decreases. To solve the problem of nonlinear data, you can use the Support Vector Regression (SVR) model. The linearity test on the gold price data shows that there are linear and nonlinear data patterns at the same time so that a combination of ARIMA and SVR is used, namely the ARIMA-SVR hybrid model. Forecasting results using the ARIMA-SVR hybrid model show better results than the ARIMA model. This is evidenced by the MAPE value of the ARIMA-SVR hybrid model which is smaller than the MAPE value of the ARIMA model. The MAPE value of the ARIMA-SVR hybrid model is 0.355 on the training data and 4.001 on the testing data, while the MAPE value of the ARIMA model is 0.903 in the training data and 4.076 in the testing data.


Sign in / Sign up

Export Citation Format

Share Document