scholarly journals Is leptin receptor expression triggered in case of embryo transfer to endometrium co-culture?

Author(s):  
İSKENDER KAPLANOĞLU ◽  
GÜLNÜR TAKE KAPLANOĞLU ◽  
ÖZGÜR ÇINAR ◽  
GÜLESER GÖKTAŞ ◽  
SERDAR DİLBAZ ◽  
...  

Background/aim: A synchronized dialogue between maternal and embryonic tissues is required for a successful implantation. Low uterine receptivity is responsible for two-thirds of implantation failures and leptin is effective in physiology of reproduction by binding to specific receptors. In this study, we investigate leptin receptor expression in cases of embryo transfer to endometrial co - culture. Material and methods: Biopsy materials were taken from 20 females with indication for co - culture application and were cultured in appropriate medium, after the epithelial cells were isolated. The grown cells were cultured in chamber slides as the first group. For the second group, day 3 embryo was added to chamber slides and the development was observed. 1 - 2 days later, the embryo was transferred and other cells (after the transfer process) were used to form the second group. After fixation, immunohistochemical staining with anti-leptin primary antibody was done. Results: Regarding the co-culture without the embryo transfer, moderate leptin receptor immunoreactivity was seen in perinuclear region and in cell membrane. And regarding co-culture with the embryo transfer, moderate leptin receptor immunreactivity was seen in cytoplasm and strong leptin receptor immunoreactivity was seen in cell membrane. Conclusion: Embryo transfer to the endometrium co-culture triggers leptin receptor expression.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 1870-P
Author(s):  
SHELLY NASON ◽  
TEAYOUN KIM ◽  
JESSICA P. ANTIPENKO ◽  
BRIAN FINAN ◽  
RICHARD DIMARCHI ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Kirsty Hamilton ◽  
Jenni Harvey

It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer’s disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer’s disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.


2013 ◽  
Vol 217 (3) ◽  
pp. 303-315 ◽  
Author(s):  
M B Mazzucco ◽  
R Higa ◽  
E Capobianco ◽  
M Kurtz ◽  
A Jawerbaum ◽  
...  

Metabolic alterations in obese and overweight mothers impact the placenta and the fetus, leading to anomalies in fetal growth and lipid accretion. The primary aim of the study was to examine the effect of a saturated fat-rich diet (FD) on growth, lipid accretion, and lipases, leptin and leptin receptor (ObR) expression in the placenta and fetal liver. We also aimed to find a role for fetal leptin in the modulation of placental and fetal liver lipase and ObR expression. Six-week-old rats were fed with a standard rat chow (control) or a 25% FD for 7 weeks until mating and during pregnancy. Also, in a group of control rats, fetuses were injected with leptin on days 19, 20, and 21 of pregnancy. On day 21, we assessed lipidemia, insulinemia, and leptinemia in mothers and fetuses. In the placenta and fetal liver, lipid concentration was assessed by thin layer chromatography (TLC) and the gene expression of lipoprotein lipase (LPL), endothelial lipase, insulin receptor (Insr), leptin, and ObR by RT-PCR. The FD induced hypertriglyceridemia and hyperleptinemia (P<0.01) in mothers and fetuses, an increase in maternal (P<0.05) and fetal weight (P<0.01), overaccumulation of lipids in fetal liver (P<0.01), and enhanced leptin expression in the placenta and fetal liver (P<0.05). Placental expression of IR and LPL was increased (P<0.05), and ObR decreased (P<0.05) in the FD group. Fetal administration of leptin induced the placental and fetal liver downregulation of ObR (P<0.05) and upregulation of LPL expression (P<0.05). The FD led to increased fetal lipid levels, which may result from high maternal lipid availability and fetal leptin effects.


2021 ◽  
Author(s):  
Magdalena Szymanska ◽  
Agnieszka Blitek

Abstract Background: The hormonal control of ovulation has become a standard procedure in the swine industry. However, exogenous gonadotropins can be detrimental to reproductive function, affecting follicle development, corpus luteum formation, and embryo development and survival. Much less is known about uterine receptivity in gilts with induced estrus. Therefore, our objective was to determine the effect of estrus induction with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) on the expression of steroid, prostaglandin, cytokine, and oxytocin receptors, as well as nuclear factor kappa B subunit 1 (NFKB1), peroxisome proliferator activated receptor gamma (PPARG), and gap junction protein alpha 1 (GJA1), in the endometrium and myometrium of early pregnant gilts. Twenty prepubertal gilts received 750 IU PMSG and 500 IU hCG 72 h later, while eighteen prepubertal gilts in the control group were observed daily for estrus behavior. All gilts were inseminated in their first estrus and slaughtered on days 10, 12, and 15 of pregnancy to collect uterine tissues for mRNA expression analyses using real-time PCR.Results: Estrus induction did not affect progesterone receptor expression in either uterine tissue. In the endometrium, greater mRNA expression of estrogen receptors (ESR1 and ESR2), androgen receptor (AR), prostaglandin (PG) E2 receptors (PTGER2 and PTGER4), PGF2α receptor (PTGFR), interleukin 6 receptor (IL6R), tumor necrosis factor α receptors (TNFRSF1A and TNFRSF1B), and oxytocin receptor (OXTR) was detected in the control than in the PMSG/hCG-treated gilts (P < 0.05). In the myometrium, concentrations of AR, PTGER2, PTGFR, and NFKB1 transcripts were lower, while PGI2 receptor and PPARG transcripts were elevated in gilts with gonadotropin-induced estrus as compared with naturally ovulated gilts (P < 0.05). Furthermore, the administration of PMSG/hCG resulted in the greater expression of GJA1 mRNA in both the endometrium and myometrium of day 15 pregnant gilts (P < 0.05). Conclusions: Estrus induction with PMSG/hCG in prepubertal gilts may affect steroid, prostaglandin, cytokine, and oxytocin receptor expression in the endometrium and myometrium, thereby altering uterine receptivity to local or systemic factors. This may, in turn, contribute to disorders in embryo-maternal interactions and the process of implantation.


Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 570 ◽  
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Junwon Choi ◽  
Chang Hu Choi ◽  
Kook Yang Park ◽  
...  

Leptin resistance in the hypothalamus has an essential role in obesity. Saturated fatty acids such as palmitate bind to Toll-like receptor 4 (TLR4) and lead to endoplasmic reticulum (ER) stress and leptin resistance. In this study, we evaluated whether extracts of Ecklonia cava would attenuate the ER stress induced by palmitate and reduce leptin resistance in hypothalamic neurons and microglia. We added palmitate to these cells to mimic the environment induced by high-fat diet in the hypothalamus and evaluated which of the E. cava phlorotannins—dieckol (DK), 2,7-phloroglucinol-6,6-bieckol (PHB), pyrogallol-phloroglucinol-6,6-bieckol (PPB), or phlorofucofuroeckol-A (PFFA)—had the most potent effect on attenuating leptin resistance. TLR4 and NF-κB expression induced by palmitate was attenuated most effectively by PPB in both hypothalamic neurons and microglia. ER stress markers were increased by palmitate and were attenuated by PPB in both hypothalamic neurons and microglia. Leptin resistance, which was evaluated as an increase in SOCS3 and a decrease in STAT3 with leptin receptor expression, was increased by palmitate and was decreased by PPB in hypothalamic neurons. The culture medium from palmitate-treated microglia increased leptin resistance in hypothalamic neurons and this resistance was attenuated by PPB. In conclusion, PPB attenuated leptin resistance by decreasing ER stress in both hypothalamic neurons and microglia.


1997 ◽  
Vol 12 (Suppl_2) ◽  
pp. 32-32 ◽  
Author(s):  
G. Nikas ◽  
Velasco J. Garcia ◽  
A. Pellicer ◽  
C. Simon

Sign in / Sign up

Export Citation Format

Share Document