The use of free amino acids in piglet diets allows the formulation of very low crude protein diets

Author(s):  
M. Gloaguen ◽  
N. Le Floc’h ◽  
Y. Primot ◽  
E. Corrent ◽  
J. van Milgen
2014 ◽  
Vol 92 (2) ◽  
pp. 637-644 ◽  
Author(s):  
M. Gloaguen ◽  
N. Le Floc'h ◽  
E. Corrent ◽  
Y. Primot ◽  
J. van Milgen

PEDIATRICS ◽  
1977 ◽  
Vol 59 (3) ◽  
pp. 407-422 ◽  
Author(s):  
David K. Rassin ◽  
Gerald E. Gaull ◽  
Kirsti Heinonen ◽  
Niels C. R. Räihäa

The optimal quantity and quality of protein for low-birth-weight infants is undefined. In this study, 106 well, appropriate-for-gestational-age, low-birth-weight infants weighing 2,100 gm or less were divided into three gestational age groups and assigned randomly within each age group to one of five feeding regimens: pooled human milk; formula 1 (protein content, 1.5 gm/100 ml, 60 parts bovine whey proteins to 40 parts bovine caseins); formula 2 (3.0 gm/100 ml, 60:40); formula 3 (1.5 gm/100 ml, 18:82); and formula 4 (3.0 gm/100 ml, 18:82). The concentrations of the free amino acids in the plasma and urine of these infants were determined. The plasma concentrations of free amino acids were generally far greater in the infants fed the 3.0-gm/100 ml protein diets than they were in the infants fed pooled human milk. The plasma concentrations of free amino acids of the infants fed the 1.5-gm/100 ml protein diets were intermediate. In general, the concentrations of the free amino acids in the plasma of the infants fed the 3.0-gm/100 ml caseinpredominant formula (F4) were furthest from those fed pooled human milk. Glutamate showed the highest plasma amino acid concentrations in infants fed both the high- and low-protein casein-predominant formulas. This was true despite the fact that the intake of glutamate on the high-protein, whey-predominant formula was twice that on the low-protein, casein-predominant formula. The differences between groups in the essential amino acids in plasma were generally greater than those of the nonessential amino acids. The concentrations of amino acids in the urine tended to parallel those of the plasma.


2000 ◽  
Vol 43 (2) ◽  
pp. 179-192
Author(s):  
H. Nonn ◽  
H. Jeroch

Abstract. Title of the Paper: Investigation on N-reduced feeding and use of free amino acids in fattening pigs The aim of the present study was to investigate the N-reduced feeding by fattening pigs feed by cereals rieh feedmixture supplemented with the free amino-acids L-lysine, DL-methionine, L-threonine, L-tryptophane, Lleucine, L-isoleucine, L-histidine and L-valine. It was to test extreme low crude protein content by requirement sufficient supply on amino-aeid. The reaction of the animals in growth, carcass quality and the reduction of Nexeretion was to investigate. The pigs were divided in two groups (control and experimental group) with 24 animals per group (12 females and 12 castrates). The experiment was divided into three periods (25–60, 60–85 and 85–110 kg body weight). The protein content of the feedmixture was by the control group 18.3, 15.6 and 13.6% and by the experimental group 14.0, 11.8 and 10.7%, respectively. The lysine-energy ratio of the feedmixture was by all three feeding periods by 0.72 or 0.74, 0.61 or 0.62 and 0.55 or 0.57 g lysine per MJ ME in control feedmixture or experimental feedmixture, respectively. By a high Performance are the average daily life weight gain (control group 869 and experimental group 863 g) and the lean meat rate (control group 55.2 and experimental group 55:0%) not influenced by the high of crude protein supply. The calculated N-excretion were by the control group 4.16 kg (as 100%) and by experimental group 2.60 kg (62.5%) per 100 kg body weight gain.


1993 ◽  
Vol 57 (2) ◽  
pp. 309-318 ◽  
Author(s):  
I. Fernández-Figares ◽  
M. Lachica ◽  
L. Pérez ◽  
R. Nieto ◽  
J. F. Aguilera ◽  
...  

AbstractFree amino acid (AA) levels in plasma, muscle and liver were measured in growing chickens given either high or low protein diets varying in quality. In experiment 1, they were force-fed once a day (09.00 h), for 4 days, at about 1·5 × M level, a nitrogen-free (NF) diet and then, on day 5, they were given either diet NF or isoenergetic (13·1 kj metabolizable energy (ME) per g dry matter (DM)) and isonitrogenous high protein diets (200 g crude protein (CP) per kg) based on casein (C), lupin (L), soya bean (SB), faba bean (FB), field pea (FP), vetch (V) or bitter vetch (B) as the sole source of protein. In experiment 2, chickens were force-fed twice a day (09.00 h and 18.00 h), for 3 days, at about 1·9 × M level, with four isoenergetic (13·1 k) ME per kg DM) and isonitrogenous low protein diets (120 g CP per kg) based on SB, FP, V or B as the sole source of protein. On days 5 (experiment 1) and 4 (experiment 2) samples of plasma, muscle and liver were taken for AA analysis over 3 to 4h after morning meal.In general, within experiments, no significant differences in AA concentrations in plasma, muscle or liver among diets were found. However, there was a qualitative but not a quantitative agreement between the AA abundance in tissues and the AA rank of dietary protein. Moreover, when pooling data from experiments 1 and 2, significant regressions were found between the levels of threonine, aspartic acid, glutamic acid, glycine and proline in plasma, of lysine, alanine, glutamic acid, glycine and proline in muscle or that of proline in liver and the corresponding amounts ingested with the different diets. Under the conditions of these experiments, however, it was not possible to establish conclusively a direct relationship between the level of free amino acids in tissues and dietary protein quality.


1996 ◽  
Vol 76 (3) ◽  
pp. 351-355 ◽  
Author(s):  
Yongjiu Cai ◽  
Richard C. Ewan ◽  
Dean R. Zimmerman

Ninty-six 51 kg-pigs were used to determine effects of dietary protein and potassium levels on concentrations of plasma urea nitrogen (PUN) and free amino acids. Pigs were fed four diets containing 13 or 15% of protein and 0 or 0.4% of potassium addition. Gilts took more days to reach an average weight of 110 kg with lower PUN and less backfat than barrows (P < 0.05), but sex did not affect concentrations of plasma free amino acids (P > 0.10). The pigs fed 15% protein diets had higher PUN (P < 0.01) and plasma threonine and isoleucine (P < 0.05), but lower (P < 0.05) plasma lysine, glutamic acid and glycine than pigs fed 13% protein diets. The 0.4% potassium addition resulted in a tendency to increase PUN (P = 0.06) and a decrease in concentrations of plasma alanine, glutamic acid and glycine (P < 0.05). There was an interaction between protein and potassium treatments (P < 0.05) in which plasma lysine concentration decreased with potassium addition to the 13% protein diet but increased with potassium addition to the 15% protein diet. The results indicate that lower PUN concentrations in gilts were associated with improved efficiency of deposition of dietary nitrogen, resulting in improved carcass grade compared with barrows receiving the same dietary treatments. Key words: Plasma urea nitrogen, free amino acids, protein, potassium, pigs


1986 ◽  
Vol 55 (3) ◽  
pp. 651-658 ◽  
Author(s):  
Ronald O. Ball ◽  
Henry S. Bayley

1. Piglets were weaned at 3 d of age and reared to 2.5 kg on a liquid diet in which the protein was supplied by dried skim milk and a mixture of free amino acids. The oxidation of L-[l-14C]phenyIalanine was measured as an indication of the partition of amino acids between retention and catabolism in pigs (2.5 kg) offered meals containing vaned concentrations of crude protein (nitrogen x 6.25).2. The dietary protein concentration was varied either by increasing the inclusion of a mixture of free amino acids in a series of diets containing 100 g protein/kg from skim milk, or by increasing the level of inclusion of the skim milk in a series of diets containing the equivalent of 100 g protein/kg from the free amino acid mixture.3. The oxidation of phenylalanine was minimized by dietary protein concentrations of 240 and 258 g/kg for the diets containing increasing concentrations of free amino acids or skim milk respectively.4. These results show that a mixture of free amino acids is used more effectively than intact protein for promoting retention of essential amino acids.5. The recovery of radioactivity in expired carbon dioxide was inversely related to the recovery of radioactivity in liver tissue when the concentration of dietary crude protein was increased from deficient to adequate, demonstrating that the fractional oxidation of the indicator amino acid was inversely related to protein synthesis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
S. Andrea Moreno ◽  
Mariana Gelambi ◽  
Alejandro Biganzoli ◽  
Jesús Molinari

AbstractFrugivorous bats often possess short intestines, and digest rapidly. These characters are thought to be weight-saving adaptations for flight. The hypothesis that they limit digestive efficiency was tested by assaying glucose and protein in fecal samples of a free-ranging bat, and in fruit of its main food plant. To assure the correct calculation of digestive efficiencies, seeds were used as a mass marker for nutrients in fruit and feces. Glucose represents 32.86%, and protein 0.65%, of the nutrient content of fruit. Digestive efficiencies for these nutrients respectively are 92.46% and 84.44%, clearly negating the hypothesis for glucose. Few studies have quantified protein in fruit. Instead, “crude protein”, a dietary parameter solely based on nitrogen determinations, is used as a surrogate of protein content. This study shows that, for fruit consumed by bats, crude protein estimates typically are much greater than true protein values, implying that a large fraction of the crude protein reported in previous studies consists of free amino acids. The rapid digestion of frugivores has the potential to limit protein digestion, thus it may require free amino acids for efficient assimilation of nitrogen; therefore, the crude protein approach is inadequate for the fruit that they consume because it does not differentiate free amino acids from protein. Adding simple sugars and free amino acids, instead of protein, to fruit reduce metabolic costs for plants. Direct assimilation of these small nutrient molecules increases digestive and foraging efficiencies. Both factors contribute to the persistence of the mutualism between plants and frugivores, with community-wide repercussions.


Sign in / Sign up

Export Citation Format

Share Document