Functional assessment of outcome of surgery to correct patellofemoral instability in human patients

2020 ◽  
Vol 16 (3) ◽  
pp. 161-167
Author(s):  
D.A. Clark ◽  
D.L. Simpson ◽  
J.D. Eldridge ◽  
V. Pai ◽  
G.R. Colborne

A case-control study with 6 months of patient follow up. This study sought to determine if surgery followed by rehabilitation for patellar instability could restore normal gait function. A previous study has established abnormalities in gait pattern and joint congruence in patients with a history of patellar instability. We hypothesised that surgery for patellofemoral instability would improve knee function. Eight human patients (mean age 29, range 17-42) who were awaiting patella stabilisation surgery (5 tibial tuberosity osteotomy, 2 medial patellofemoral ligament reconstruction, 1 trochleoplasty) were compared against eight normal Controls (mean age 28, range 19-31). Patients were assessed pre-operatively and six months after surgery by biomechanical gait analysis. Gait trials involved simultaneous collection of kinematic and force data. Patients were grouped into two subgroups pre-operatively based on knee joint net moment during stance, and their joint moments during stance pre- and post-operatively were compared against the Control subjects. In pre-operative gait analysis, four patients (P1) produced some extensor moment in early stance and four (P2) demonstrated a severe gait deficiency with failure to generate a knee extensor moment during stance. Normalisation in gait pattern was observed in all patients post-operatively. Those who had the most severe gait abnormality (P2) demonstrated the most improvement in their knee joint moments. Improvements were observed in the milder (P1) cases, but these were less dramatic. Patella stabilisation by surgery can restore normal gait function. Normalising the anatomy of the knee extensor mechanism is the objective of surgery. Normal anatomy facilitates the rehabilitation objectives of optimising extensor function during the weight-bearing phase of gait.

PEDIATRICS ◽  
1956 ◽  
Vol 17 (5) ◽  
pp. 786-791
Author(s):  
C. B. Larson

Foot Problems NORMALLY the foot functions differently in stance than it does in motion. During stance, static stresses are most important. The foot may be divided at the midtarsal joints into the hindfoot which receives 60 per cent of the weight-bearing stress and the forefoot which receives 40 per cent of the stress. The spring ligament normally transmits the stresses from hindfoot to forefoot. All degrees of foot shape and size may be natural for a particular individual. Similarly, the gait pattern of a child varies considerably within the normal range. The child should be allowed to establish his own normal gait pattern. During the toddling stages the child's shoe soles should be flexible enough to bend at the toe. One should avoid the use of rigid shoes. Some of the conditions which may alter normal stance or gait follow. Simple Foot Strain Long arch strain is due to abnormal stress on the longitudinal ligament. Inflammatory repair of the ligament produces pain which can be demonstrated by finding an area tender to palpation. Some patients have a depressed longitudinal arch or long spring ligament without foot symptoms. A diagnosis of long arch strain cannot be made unless tenderness is present. A tight heel cord may produce foot strain. The foot accommodates to a tight heel cord by pronation of the forefoot. To correct a tight heel cord, the child should stand away from the wall (while facing it) with the heels flat, then lean forward count to 3. Repeat 5 times twice daily. Pronation


Author(s):  
Feng Tian ◽  
Mohammad Elahinia ◽  
Mohamed Samir Hefzy

Dynamic KAFOs are developed to recover the normal walking ability during both stance and swing phases. Three types of dynamic KAFOs have been reported in the literature. Various actuation mechanisms including spring, pneumatic and hydraulic systems have been used. These devices can improve walking disability and compensate lower leg muscle deficiency. However, they are bulky, in some cases need complex control systems and do not recreate the normal gait pattern. These shortcomings have limited the application of dynamic KAFOs in daily life. The purpose of this paper is to develop a novel knee actuator for a dynamic KAFO that is actuated easily by employing shape memory materials. Such an actuation system makes the KAFO lightweight and has a greater potential to restore the normal gait. Torsional superelastic alloys are used in this actuator in order to match the stiffness of the knee joint of the KAFO with that of a normal knee joint during the walking gait cycle. There are two distinct parts in the knee actuator, acting independently to mimic the two phases of the gait cycle. One engages only in the stance phase and the other works in the swing phase. Each part is developed by combining a superelastic rod and a stiff rotary spring, in series. According to numerical simulation, such combination reproduces the varying knee stiffness during the whole walking gait. Also mechanical experiments have been conducted to further verify the conceptual design. The simulation and experimental results show that the actuator is able to reproduce the stiffness of the normal knee joint during the gait cycle.


2018 ◽  
Vol 26 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Lei Zhou ◽  
Marie-Anne Gougeon ◽  
Julie Nantel

We investigated the impact of Nordic walking (NW) on gait patterns in individuals with Parkinson’s disease (PD) following a 6-week NW familiarization. Twelve participants with PD and 12 healthy older adults took part in a gait analysis walking with and without poles (NP). Results showed larger knee power (knee extensor: K2) on the most affected leg in NW compared to NP (P = .01). On the less affected side, larger power absorption (knee extensor: K3) was found during preswing (K3) compared to older adults in both NP and NW (P = 0.01). NW showed longer stride length and single support time (P < .01) compared to NP. Walking with poles improved gait spatial–temporal characteristics and power profiles at the knee joint both on the less and most affected sides in individuals with PD. NW could be beneficial to help regain a more functional gait pattern in PD.


2012 ◽  
Vol 28 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Erik B. Simonsen ◽  
Morten B. Svendsen ◽  
Andreas Nørreslet ◽  
Henrik K. Baldvinsson ◽  
Thomas Heilskov-Hansen ◽  
...  

The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher incidence of osteoarthritis in the knee joint in women as compared with men.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sébastien Lobet ◽  
Christine Detrembleur ◽  
Firas Massaad ◽  
Cedric Hermans

In patients with haemophilia (PWH) (from Greek “blood love”), the long-term consequences of repeated haemarthrosis include cartilage damage and irreversible arthropathy, resulting in severe impairments in locomotion. Quantifying the extent of joint damage is therefore important in order to prevent disease progression and compare the efficacy of treatment strategies. Musculoskeletal impairments in PWH may stem from structural and functional abnormalities, which have traditionally been evaluated radiologically or clinically. However, these examinations are performed in a supine position (i.e., non-weight-bearing condition). We therefore suggest three-dimensional gait analysis (3DGA) as an innovative approach designed to focus on the functional component of the joint during the act of walking. This is of the utmost importance, as pain induced by weight-bearing activities influences the functional performance of the arthropathic joints significantly. This review endeavors to improve our knowledge of the biomechanical consequences of multiple arthropathies on gait pattern in adult patients with haemophilia using 3DGA. In PWH with arthropathy, the more the joint function was altered, the more the metabolic energy was consumed. 3DGA analysis could highlight the effect of an orthopedic disorder in PWH during walking. Indeed, mechanical and metabolic impairments were correlated to the progressive loss of active mobility into the joints.


Author(s):  
Benedikt Stolz ◽  
Casper Grim ◽  
Christoph Lutter ◽  
Kolja Gelse ◽  
Monika Schell ◽  
...  

Abstract Background Continuous passive motion (CPM) and active knee joint motion devices are commonly applied after various surgical procedures. Despite the growing use of active motion devices, there is a paucity of data comparing plantar loads between the different mobilization techniques. The aim of this study was to investigate foot loads during knee joint mobilization in continuous passive and active knee joint motion devices and to compare this data to the physiological load of full weight-bearing. Patients/Material and Methods Fifteen healthy participants (7 women and 8 men, 25 ± 3 years, 66 ± 6 kg, 175 ± 10 cm, BMI 21.9 ± 2) were recruited. Plantar loads were measured via dynamic pedobarography using a continuous passive motion device (ARTROMOT-K1, ORMED GmbH, Freiburg, Germany) and an active motion device (CAMOped, OPED AG, Cham, Switzerland), each with a restricted range of motion of 0-0-90° (ex/flex) and free ROM for the knee joint. For the active motion device, cycles were performed at four different resistance levels (0-III). Data were assessed using the pedar® X system (Novel Inc., Munich, Germany), which monitors loads from the foot-sole interface. Force values were compared between motion devices and normal gait, which served as the reference for conditions of full weight-bearing. P-values of < 0.05 were considered statistically significant. Results Normal gait revealed peak forces of 694 ± 96 N, defined as 100 %. The CPM device produced plantar forces of less than 1.5 N. Using the active motion device in the setting of 0-0-90° produced foot loads of < 1.5 N (resistance 0-II) and 3.4 ± 9.3 N with a resistance of III (p < 0.001). Conditions of free ROM resulted in foot loads of 4.5 ± 4.5 N (resistance 0), 7.7 ± 10.7 N (resistance I), 6.7 ± 10.4 (resistance II) and 6.7 ± 6.9 N with a resistance of III (p < 0.001), corresponding to 0.6 %, 1.1 %, 1.0 % and 1.0 % of full weight-bearing, respectively. Conclusion Motion exercises of the knee joint can be performed both with passive and active devices in accordance with strict weight-bearing restrictions, which are often recommended by surgeons. Also, active motion devices can be used when the ankle joint or foot have to be offloaded. Further studies assessing intraarticular joint load conditions have to be performed to confirm the findings obtained in this study.


2017 ◽  
Vol 21 (1) ◽  
pp. 4-11
Author(s):  
Joanna Golec ◽  
Krzysztof Wójcik ◽  
Agnieszka Bar ◽  
Elżbieta Szczygieł ◽  
Dorota Czechowska ◽  
...  

ACL injuries – next to damage to the collateral ligaments, menisci of the knee – are the most common injuries of the knee joint and very often require surgical treatment. The main aim of the treatment is to restore normal gait pattern. The objective of this study was to determine the influence of reconstructed ACL on selected gait parameters by using an accelerometer system. The study involved 34 people aged 18-54 who were divided in two groups. The first group consisted of 20 people after ACL reconstruction, aged 19-54 years old (mean 29). The second group consisted of 14 healthy people between the age of 18-45 (mean 25.36). Gait analysis in normal and fast rate was performed using the CQMotion Electronik System, MEMS type. Differences in the results were observed in the first group. In 75% of people during normal walking and in 95% during fast walking, a 5% difference between the healthy limb and the limb after ACL reconstruction was observed. The gait rate had influence on acceleration value which was observed in RMS values in both of the groups. The RMS value was different, depending on the gait rate. Accelerometric gait analysis shows that the differences in comparing rate values between limbs are not so great, however, the gait pace has influence on some gait parameters. parameters.


Author(s):  
S. van Drongelen ◽  
S. Braun ◽  
F. Stief ◽  
A. Meurer

Patients with unilateral hip osteoarthritis show a characteristic gait pattern in which they unload the affected leg and overload the unaffected leg. Information on the gait characteristics of patients with bilateral hip osteoarthritis is very limited. The main purposes of this study were to investigate whether the gait pattern of both legs of patients with bilateral hip osteoarthritis deviates from healthy controls and whether bilateral hip osteoarthritis patients show a more symmetrical joint load compared to unilateral hip osteoarthritis patients. In this prospective study, 26 patients with bilateral hip osteoarthritis, 26 patients with unilateral hip osteoarthritis and 26 healthy controls were included. The three groups were matched for gender, age and walking speed. Patients were scheduled for a unilateral total hip arthroplasty on the more affected/more painful side. All participants underwent a three-dimensional gait analysis. Gait kinematics and gait kinetics of patients and controls were compared using Statistical Parametric Mapping. Corrected for speed, the gait kinematics and kinetics of both legs of patients with bilateral hip osteoarthritis differed from healthy controls. Bilateral patients had symmetrical knee joint loading, in contrast to the asymmetrical knee joint loading in unilateral hip osteoarthritis patients. The ipsilateral leg of the bilateral patients could be included in studies in addition to unilateral hip osteoarthritis patients as no differences were found. Although patients with bilateral hip osteoarthritis show more symmetrical frontal plane knee joint moments, a pathological external knee adduction moment in the second half of stance was present in the ipsilateral leg in patients with unilateral and bilateral hip osteoarthritis. The lateral adjustment of the knee adduction moment may initiate or accelerate progression of degenerative changes in the lateral compartment of the knee.


1998 ◽  
Vol 11 (02) ◽  
pp. 85-93 ◽  
Author(s):  
Joanne R. Cockshutt ◽  
H. Dobson ◽  
C. W. Miller ◽  
D. L. Holmberg ◽  
Connie L. Taves ◽  
...  

SummaryA retrospective case series study was done to determine the long-term outcome of operations upon dogs treated for canine hip dysplasia by means of a triple pelvic osteotomy (TPO). Twentyfour dogs with bilateral hip dysplasia, that received a unilateral TPO between January 1988 and June 1995, were re-examined at the Ontario Veterinary College. The assessment included physical, orthopedic and lameness examinations, standard blood work, pelvic radiographs and force plate gait analysis. They were compared to bilaterally dysplastic dogs that had not been treated, and also to normal dogs. Force plate data analysis demonstrated a significant increase in peak vertical force (PVF) and mean vertical force over stance (MVF) in the limb that underwent surgical correction by means of a TPO, when compared to the unoperated hip. It was determined that performing a unilateral TPO on a young dysplastic dog resulted in greater forces and weight bearing being projected through the TPO corrected limb when compared to the unoperated limb.Dogs with bilateral hip dysplasia treated with a unilateral triple pelvic osteotomy (TPO) were assessed by force plate gait analysis, radiographs and orthopedic examination. There was a significant increase in hip Norberg angles over time, although degenerative changes did progress. Limbs that had been operated upon had significantly greater peak and mean ground reaction forces than limbs that had not received an operation.


2015 ◽  
Vol 21 (4.1) ◽  
pp. 638-642
Author(s):  
Andrius Brazaitis ◽  
Algirdas Tamosiunas ◽  
Janina Tutkuviene

Purpose. The aim of the present study was to investigate tibial tuberosity-trochlear groove (TT-TG) distance dynamics in patients with patellofemoral pain (PFP) and pain free individuals by using full weight bearing kinematic magnetic resonance imaging (MRI) And correlation with patellar instability. Materials and methods. 51 female individuals with PFP and 26 pain free female individuals participated in the study. The kinematic MRI was performed with 1,5 T MRI unit and full-weight bearing. TT-TG distance, bissect offset (BSO) and patellar tilt angle (PTA) were measured in steps of 10° between 50° of flexion to full extension. Results. The TT–TG was higher in PFP patients compared to volunteers’ from 40° to full extension. This difference was statistically significant (p<0.01). PFP patients demonstrated statistically significantly greater TT-TG distance increase from 30° to full extension. BSO and PTA were moderately correlated to TT-TG from 20° of flexion to full extension. Conclusion. TT-TG distance is dynamic and increases significantly during extension in patients with PFP and pain free individuals, depending on knee flexion angle. It shows different pattern of dynamics in PFP group. TT-TG distance is associated with patellar instability (BSO and PTA) at low degrees of flexion.


Sign in / Sign up

Export Citation Format

Share Document