Walking on High Heels Changes Muscle Activity and the Dynamics of Human Walking Significantly

2012 ◽  
Vol 28 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Erik B. Simonsen ◽  
Morten B. Svendsen ◽  
Andreas Nørreslet ◽  
Henrik K. Baldvinsson ◽  
Thomas Heilskov-Hansen ◽  
...  

The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher incidence of osteoarthritis in the knee joint in women as compared with men.

2012 ◽  
Vol 33 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Alicia Foster ◽  
Mark G. Blanchette ◽  
Yi-Chen Chou ◽  
Christopher M. Powers

Background: Wearing high heel shoes is thought to increase an individual's likelihood of experiencing a lateral ankle sprain. The purpose of this study was to evaluate the influence of heel height on frontal plane kinematics, kinetics, and electromyographic (EMG) activity of the ankle joint during walking. Methods: Eighteen healthy women participated. Three-dimensional kinematics, ground reaction forces, and EMG signals of the tibialis anterior (TA) and peroneus longus (PL) were recorded as subjects ambulated in high (9.5 cm) and low (1.3 cm) heel shoes at a self-selected walking velocity. Peak ankle plantarflexion, peak ankle inversion angle, and the peak ankle inversion moment during the stance phase of gait were evaluated. The EMG variables of interest consisted of the normalized average signal amplitude of the TA and PL during the first 50% of the stance phase. Paired t-tests were used to assess differences between the two shoe conditions. Results: When compared to the low heel condition, wearing high heels resulted in significantly greater peak ankle plantarflexion and inversion angles ( p < 0.001). In addition, the peak inversion moment and PL muscle activation was found to be significantly higher in the high heel condition ( p < 0.001). No difference in TA muscle activity was found between shoe conditions ( p = 0.30). Conclusion: The plantarflexed and inverted posture when wearing high heels may increase an individual's risk for experiencing a lateral ankle sprain. Clinical Relevance: Data obtained from this investigation highlights the need for increased awareness and proper education related to the wearing of high heel shoes.


Author(s):  
Nicholas H. Yang ◽  
H. Nayeb-Hashemi ◽  
Paul K. Canavan

Osteoarthritis (OA) is a degenerative disease of articular cartilage that may lead to pain, limited mobility and joint deformation. It has been reported that abnormal stresses and irregular stress distribution may lead to the initiation and progression of OA. Body weight and the frontal plane tibiofemoral angle are two biomechanical factors which could lead to abnormal stresses and irregular stress distribution at the knee. The tibiofemoral angle is defined as the angle made by the intersection of the mechanical axis of the tibia with the mechanical axis of the femur in the frontal plane. In this study, reflective markers were placed on the subjects’ lower extremity bony landmarks and tracked using motion analysis. Motion analysis data and force platform data were collected together during single-leg stance, double-leg stance and walking gait from three healthy subjects with no history of osteoarthritis (OA), one with normal tibiofemoral angle (7.67°), one with varus (bow-legged) angle (0.20°) and one with valgus (knocked-knee) angle (10.34°). The resultant moment and forces in the knee were derived from the data of the motion analysis and force platform experiments using inverse dynamics. The results showed that Subject 1 (0.20° valgus) had a varus moment of 0.38 N-m/kg, during single-leg stance, a varus moment of 0.036 N-m/kg during static double-leg stance and a maximum varus moment of 0.49 N-m/kg during the stance phase of the gait cycle. Subject 2 (7.67° valgus tibiofemoral angle) had a varus moment of 0.31 N-m/kg, during single-leg stance, a valgus moment of 0.046 N-m/kg during static double-leg stance and a maximum varus moment of 0.37 N-m/kg during the stance phase of the gait cycle. Subject 3 (10.34° valgus tibiofemoral angle) had a varus moment of 0.30 N-m/kg, during single-leg stance, a valgus moment of 0.040 N-m/kg during static double-leg stance and a maximum varus moment of 0.34 N-m/kg during the stance phase of the gait cycle. In general, the results show that the varus moment at the knee joint increased with varus knee alignment in static single-leg stance and gait. The results of the motion analysis were used to obtain the knee joint contact stress by finite element analysis (FEA). Three-dimensional (3-D) knee models were constructed with sagittal view MRI of the knee. The knee model included the bony geometry of the knee, the femoral and tibial articular cartilage, the lateral and medial menisci and the cruciate and the collateral ligaments. In initial FEA simulations, bones were modeled as rigid, articular cartilage was modeled as isotropic elastic, menisci were modeled as transversely isotopic elastic, and the ligaments were modeled as 1-D nonlinear springs. The material properties of the different knee components were taken from previously published literature of validated FEA models. The results showed that applying the axial load and varus moment determined from the motion analysis to the FEA model Subject 1 had a Von Mises stress of 1.71 MPa at the tibial cartilage while Subjects 2 and 3 both had Von Mises stresses of approximately 1.191 MPa. The results show that individuals with varus alignment at the knee will be exposed to greater stress at the medial compartment of the articular cartilage of the tibia due to the increased varus moment that occurs during single leg support.


Author(s):  
Jana Holder ◽  
Ursula Trinler ◽  
Andrea Meurer ◽  
Felix Stief

The assessment of knee or hip joint loading by external joint moments is mainly used to draw conclusions on clinical decision making. However, the correlation between internal and external loads has not been systematically analyzed. This systematic review aims, therefore, to clarify the relationship between external and internal joint loading measures during gait. A systematic database search was performed to identify appropriate studies for inclusion. In total, 4,554 articles were identified, while 17 articles were finally included in data extraction. External joint loading parameters were calculated using the inverse dynamics approach and internal joint loading parameters by musculoskeletal modeling or instrumented prosthesis. It was found that the medial and total knee joint contact forces as well as hip joint contact forces in the first half of stance can be well predicted using external joint moments in the frontal plane, which is further improved by including the sagittal joint moment. Worse correlations were found for the peak in the second half of stance as well as for internal lateral knee joint contact forces. The estimation of external joint moments is useful for a general statement about the peak in the first half of stance or for the maximal loading. Nevertheless, when investigating diseases as valgus malalignment, the estimation of lateral knee joint contact forces is necessary for clinical decision making because external joint moments could not predict the lateral knee joint loading sufficient enough. Dependent on the clinical question, either estimating the external joint moments by inverse dynamics or internal joint contact forces by musculoskeletal modeling should be used.


2001 ◽  
Vol 17 (2) ◽  
pp. 173-180 ◽  
Author(s):  
Adrienne E. Hunt ◽  
Richard M. Smith

Three-dimensional ankle joint moments were calculated in two separate coordinate systems, from 18 healthy men during the stance phase of walking, and were then compared. The objective was to determine the extent of differences in the calculated moments between these two commonly used systems and their impact on interpretation. Video motion data were obtained using skin surface markers, and ground reaction force data were recorded from a force platform. Moments acting on the foot were calculated about three orthogonal axes, in a global coordinate system (GCS) and also in a segmental coordinate system (SCS). No differences were found for the sagittal moments. However, compared to the SCS, the GCS significantly (p < .001) overestimated the predominant invertor moment at midstance and until after heel rise. It also significantly (p < .05) underestimated the late stance evertor moment. This frontal plane discrepancy was attributed to sensitivity of the GCS to the degree of abduction of the foot. For the transverse plane, the abductor moment peaked earlier (p < .01) and was relatively smaller (p < .01) in the GCS. Variability in the transverse plane was greater for the SCS, and attributed to its sensitivity to the degree of rearfoot inversion. We conclude that the two coordinate systems result in different calculations of nonsagittal moments at the ankle joint during walking. We propose that the body-based SCS provides a more meaningful interpretation of function than the GCS and would be the preferred method in clinical research, for example where there is marked abduction of the foot.


Medicina ◽  
2019 ◽  
Vol 55 (12) ◽  
pp. 756
Author(s):  
Takashi Fukaya ◽  
Hirotaka Mutsuzaki ◽  
Koichi Mori

Background and Objectives: The purpose of this study was to compare the side-to-side differences in knee joint movement and moment for the degree of pain in the walking stance phase in patients with bilateral knee osteoarthritis (KOA) of comparable severity. We hypothesized that knee joint movement and moment on the side with strong pain were lower compared with the side with weak pain. Materials and Methods: We included 11 patients diagnosed with bilateral severe KOA. In all patients’ left and right knees, the Kellgren–Lawrence radiographic scoring system grade was level 4, and the femorotibial angle and knee range of motion were equivalent. Following patients’ interviews with an orthopedic surgeon, we performed a comparative study with KOA with strong pain (KOAs) as the strong painful side and KOA with weak pain (KOAw) as the weak painful side. Data for changes in bilateral knee joint angles in three dimensions during the stance phase and bilateral knee sagittal and frontal moments exerted in the early and late stance phases were extracted from kinematics and kinetics analyses. Results: Three-dimensional joint movements in the knee joint were not significantly different in all phases between KOAs and KOAw. Knee extensor moment in the early stance phase in KOAs was significantly smaller than that in KOAw. Knee abductor moment in the early and late stance phase was not significantly different between KOAs and KOAw. Conclusions: Although we found no difference in joint motion in bilateral knee joints, knee extensor moment on the side with strong pain was decreased. In patients with bilateral severe KOA, it was suggested that the magnitude of knee pain contributed to the decrease in knee joint function.


2013 ◽  
Vol 29 (3) ◽  
pp. 329-335 ◽  
Author(s):  
Henrik Koblauch ◽  
Thomas Heilskov-Hansen ◽  
Tine Alkjær ◽  
Erik B. Simonsen ◽  
Marius Henriksen

It is unclear how rotations of the lower limb affect the knee joint compression forces during walking. Increases in the frontal plane knee moment have been reported when walking with internally rotated feet and a decrease when walking with externally rotated feet. The aim of this study was to investigate the knee joint compressive forces during walking with internal, external and normal foot rotation and to determine if the frontal plane knee joint moment is an adequate surrogate for the compression forces in the medial and lateral knee joint compartments under such gait modifications. Ten healthy males walked at a fixed speed of 4.5 km/h under three conditions: Normal walking, internally rotated and externally rotated. All gait trials were recorded by six infrared cameras. Net joint moments were calculated by 3D inverse dynamics. The results revealed that the medial knee joint compartment compression force increased during external foot rotation and the lateral knee joint compartment compression force increased during internal foot rotation. The increases in joint loads may be a result of increased knee flexion angles. Further, these data suggest that the frontal plane knee joint moment is not a valid surrogate measure for knee joint compression forces but rather indicates the medial-to-lateral load distribution.


2020 ◽  
Vol 16 (3) ◽  
pp. 161-167
Author(s):  
D.A. Clark ◽  
D.L. Simpson ◽  
J.D. Eldridge ◽  
V. Pai ◽  
G.R. Colborne

A case-control study with 6 months of patient follow up. This study sought to determine if surgery followed by rehabilitation for patellar instability could restore normal gait function. A previous study has established abnormalities in gait pattern and joint congruence in patients with a history of patellar instability. We hypothesised that surgery for patellofemoral instability would improve knee function. Eight human patients (mean age 29, range 17-42) who were awaiting patella stabilisation surgery (5 tibial tuberosity osteotomy, 2 medial patellofemoral ligament reconstruction, 1 trochleoplasty) were compared against eight normal Controls (mean age 28, range 19-31). Patients were assessed pre-operatively and six months after surgery by biomechanical gait analysis. Gait trials involved simultaneous collection of kinematic and force data. Patients were grouped into two subgroups pre-operatively based on knee joint net moment during stance, and their joint moments during stance pre- and post-operatively were compared against the Control subjects. In pre-operative gait analysis, four patients (P1) produced some extensor moment in early stance and four (P2) demonstrated a severe gait deficiency with failure to generate a knee extensor moment during stance. Normalisation in gait pattern was observed in all patients post-operatively. Those who had the most severe gait abnormality (P2) demonstrated the most improvement in their knee joint moments. Improvements were observed in the milder (P1) cases, but these were less dramatic. Patella stabilisation by surgery can restore normal gait function. Normalising the anatomy of the knee extensor mechanism is the objective of surgery. Normal anatomy facilitates the rehabilitation objectives of optimising extensor function during the weight-bearing phase of gait.


Author(s):  
David Kingston

The bodyweight squat is routinely used for conditioning of the knee musculature. In the performance of this exercise, modifications in the initial standing position may result in altered frontal plane kneel loading, and hence may potentially be used for targeted exercise prescription. The purpose of this study is to quantify the frontal plane mechanical loading on the knee joint whilst performing the bodyweight squat exercise, and to examine the effects of varying stance width and foot rotation angle. Twenty-four participants (14 males) performed 4 randomized sets of 8 repetitions of the body weight resistant squat exercise in the following conditions: 1) Shoulder width (SW) stance with parallel feet; 2) SW stance with feet externally rotated 30°; 3) 140% SW stance with parallel feet, and; 4) 140% SW stance with the feet externally rotated by 30°. The adduction/abduction knee joint moment experienced across conditions was calculated using inverse dynamics procedures. Moment waveforms were subjected to Principal Component (PC) analysis, with 3 PC’s retained based on a 90% trace criteria. Following, a 1-way repeated measures ANOVA and pair wise comparisons were used to discern differences between conditions. Omnibus test results indicate significant differences across conditions for PC1 and PC2 (p<0.01), Post hoc comparisons and waveform interpretation of PC1 extreme scores showed that the magnitude of the adduction moment was higher throughout the movement in the foot rotated conditions vs. the parallel feet conditions in both stance widths (mean Z scores .69 & .65 vs. -.88 & -.45, p<0.01, respectively). For PC2, significant differences were found between the 2 parallel feet conditions and the 2 foot rotated conditions, as well as between the foot conditions in the wide stance squats. PC2 differences were interpreted as phase shift operators. We found that modification of foot rotation slightly alters the magnitude and timing of knee adduction moment component during performance of the body weight squat. The observed magnitude differences are presumably a consequence of alteration in the location of the point of application of the ground reaction force during the initial standing posture. The findings may assist clinicians in exercise prescription decision making.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Yihua Chang ◽  
Weixin Wang ◽  
Chenglong Fu

Abstract This paper presents the design and preliminary evaluation of a quasi-passive lower limb exoskeleton for walking efficiency improvements. The exoskeleton recycles the negative work performed by the knee joint in late swing phase and the ankle joint in mid-stance phase, to assist ankle push-off in late-stance phase when a burst of positive power is needed. The exoskeleton consists of a torsion spring as an energy storage element, and two clutches attached to both ends of the spring to control the timing of recycling and releasing energy in a gait cycle. The two clutches are actively controlled by two small servo motors with very low power consumption based on the plantar pressure. The novelty of this exoskeleton is it makes the extra kinetic energy dissipated at the knee joint reusable, by transferring it to the ankle joint to assist positive power generation during push-off, for the first time. Eight male subjects walked with the exoskeleton engaged (EXO_ON), disengaged (EXO_OFF), and without the exoskeleton (NO_EXO). Inverse dynamics analysis demonstrated reduced negative biological work at the knee joint during late swing and at the ankle joint during mid stance, as well as reduced positive biological work at the ankle joint during late stance comparing the EXO_ON to EXO_OFF conditions. These results prove the effectiveness of the exoskeleton at joint level.


Sign in / Sign up

Export Citation Format

Share Document