Static postural differences between male and female equestrian riders on a riding simulator

2021 ◽  
pp. 1-8
Author(s):  
T.L. Bye ◽  
R. Martin

This study aimed to compare static posture of male and female riders on a riding simulator. Ten female and five male riders underwent a 5 min standardised exercise programme on the simulator, they were then videoed for 10 s from each the left, right, and rear views whilst stationary on the simulator. Two-dimensional kinematic analysis of the videos showed that male riders had a more neutrally positioned pelvis in the sagittal plane (median left: 6.47°, right: 5.24°) with females demonstrating a posterior pelvic tilt (L: 14.04°, R: 13.55°). Females showed significantly greater pelvic obliquity (median female: 1.99°, male: 0.73°), trunk lean (F: 1.60°, M: 0.43°), and shoulder tilt (F: 1.79°, M: 0.57°) in the frontal plane, demonstrating an overall greater postural asymmetry. Previous studies of elite riders have shown a more anteriorly rotated pelvis to be more desirable. Symmetry of riding position is favourable as it allows movements to be performed with ease and ensures even force distribution through the saddle to the horse. Male riders may therefore have a biomechanical advantage over females when it comes to maintaining a desirable riding position. This research should now be extended to study riders on the horse in motion.

2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Kateřina Kolářová ◽  
Tomáš Vodička ◽  
Michal Bozděch ◽  
Martin Repko

Purpose: The purpose of the study was to describe changes in the kinematic parameters in the patients’ gait after total hip replacement. Methods: Research group of men in the end stage of osteoarthritis indicated to the THR (n = 10; age 54.1 ± 7.5 years; weight 92.2 ± 9.6 kg; height 179.7 ± 5.9 cm). All participants underwent a total of three measurements: before surgery, 3 and 6 months after the surgery. Using the 3D kinematic analysis system, the patients’ gait was recorded during each measurement session and kinematic analysis was carried out. The parameters that were monitored included the sagittal range of motion while walking in the ankle, the knee and the hip joints of the operated and the unoperated limb, and the range in the hip joint’s frontal plane, the rotation of pelvis in the frontal and transverse planes, as well as the speed of walking and the walking step length. Results: Significant increases were found in sagittal range of motion in the operated hip joint, sagittal range of motion in the ankle joint on the unoperated side and in the walking step length of the unoperated limb. Conclusions: During walking after a THR, the sagittal range of motion in the ankle of the unoperated limb increases. Also, the range of motion in the sagittal plane on the operated joint increases, which is related to the lengthening of the step of the unoperated lower limb.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Michalina Błażkiewicz

Purpose: The objective of this study was to analyze the muscle force distribution and lower limb joint loading during two types of pirouettes and check which muscle in which pirouette generates the highest force and which joint is the most loaded. Methods: Skilled dancers (n = 16) performed single-turn pirouettes in jazz and classic styles. Kinematic and kinetic data were collected using the Vicon system and Kistler plates. The joint reaction forces and muscle forces were calculated using a musculoskeletal model in the AnyBody Modeling System. Results: No statistically significant differences were found for the duration of the turn in both pirouettes. The range of motion in all joints of supporting leg in sagittal plane and in hip joint in frontal plane for non-supporting leg were significantly higher in classic pirouette. The ankle joint was the most loaded joint in both pirouettes and its maximal value was significantly higher in classic pirouette. The force generated by ankle plantar flexors muscles was significantly greater in the jazz pirouette in turn phase. For the nonsupport limb, external hip rotators generated significantly greater force when performing the classic pirouette. Conclusions: It seems that early stage dancers may start their lessons with jazz pirouettes, where necessary joint mobility is lesser. They also are supposed to increase muscle strength and body awareness with such proceedings. A better awareness of the mechanical loads on the musculoskeletal system which a dancer performing pirouettes faces should have an impact on the way dance classes are conducted and choreographic elements are sequenced.


Author(s):  
Stefan Đorđević ◽  
Bojan Jorgić ◽  
Saša Milenković ◽  
Ratko Stanković ◽  
Mima Stanković

The aim of this study is to determine the state of postural disorders in the sagittal and frontal planes of the spinal column, as well as any gender differences in first-year elementary school students. The participant sample comprised 138 school children, 73 male and 56 female participants, all from the territory of the municipality of Knjaževac, Serbia. The measuring instrument, the Formetric 4D System, Diers, Germany was used for the assessment of postural disorders of the spinal column. The testing results were presented in terms of frequencies and percentages, while the chi-square independence test was used to determine differences in spinal deformity incidence between male and female participants. The results obtained indicate that, in the sagittal plane, deformity was present in a total of 73.9% of the sample (72.6% among the male and 75.4% among the female participants), whereas in the frontal plane this percentage amounted to 84.1% (84.9% among the male, and 83.1% among the female ones). Moreover, the results indicate that no statistically significant differences were found in terms of the incidence of postural disorders between male and female participants in the sagittal plane (sig=0.859) and in the frontal plane of the spinal column (sig=0.949). In view of the results obtained, it can be concluded that a high incidence of spinal postural disorders in both the frontal and sagittal planes was equally present in participants of both genders.


2021 ◽  
pp. 154596832110193
Author(s):  
Sungwoo Park ◽  
Chang Liu ◽  
Natalia Sánchez ◽  
Julie K. Tilson ◽  
Sara J. Mulroy ◽  
...  

Background People poststroke often walk with a spatiotemporally asymmetric gait, due in part to sensorimotor impairments in the paretic lower extremity. Although reducing asymmetry is a common objective of rehabilitation, the effects of improving symmetry on balance are yet to be determined. Objective We established the concurrent validity of whole-body angular momentum as a measure of balance, and we determined if reducing step length asymmetry would improve balance by decreasing whole-body angular momentum. Methods We performed clinical balance assessments and measured whole-body angular momentum during walking using a full-body marker set in a sample of 36 people with chronic stroke. We then used a biofeedback-based approach to modify step length asymmetry in a subset of 15 of these individuals who had marked asymmetry and we measured the resulting changes in whole-body angular momentum. Results When participants walked without biofeedback, whole-body angular momentum in the sagittal and frontal plane was negatively correlated with scores on the Berg Balance Scale and Functional Gait Assessment supporting the validity of whole-body angular momentum as an objective measure of dynamic balance. We also observed that when participants walked more symmetrically, their whole-body angular momentum in the sagittal plane increased rather than decreased. Conclusions Voluntary reductions of step length asymmetry in people poststroke resulted in reduced measures of dynamic balance. This is consistent with the idea that after stroke, individuals might have an implicit preference not to deviate from their natural asymmetry while walking because it could compromise their balance. Clinical Trials Number: NCT03916562.


1998 ◽  
Vol 1 (3) ◽  
pp. 173-187
Author(s):  
Wayne J. Albert ◽  
Joan M. Stevenson ◽  
Geneviève A. Dumas ◽  
Roger W. Wheeler

The objectives of this study were to: 1) develop a dynamic 2D link segment model for lifting using the constraints of four sensors from an electromagnetic motion analysis system; 2) evaluate the magnitude of shoulder movement in the sagittal plane during lifting; and 3) investigate the effect of shoulder translation on trunk acceleration and lumbar moments calculated by the developed model and comparing it with two separate 2D dynamic link segment models. Six women and six men lifted loads of 2 kg, 7 kg, 12 kg and 2 kg, 12 kg, 22 kg respectively, under stoop, squat and freestyle conditions. Trunk orientation and position, as well as shoulder position were monitored during all lifts using the Polhemus FASTRAK\trdmk. Results indicated that average range of motion was 0.05 ± 0.02 m in the horizontal direction and 0.03 ± 0.02 m in the vertical direction. Shoulder position relative to T1 was located 0.07 ± 0.02 m anteriorly, and 0.02 ± 0.04 m superiorly (0.06 and 0.00 m for males and 0.08 and 0.04 m for females, respectively). To estimate the effect of shoulder motion on trunk acceleration and L5/S1 moments, three two-dimensional dynamic link segment models were developed within the constraints of the electromagnetic tracking system and compared. Trunk segment endpoints were defined as L5/S1 and either T1 or shoulder depending on model type. For trunk accelerations, average differences between models were greater than 40 deg/s² in 70.4% trunk accelerations did not translate into significantly different moment calculations between models. Average peak dynamic L5/S1 moment differences between models were smaller than 4 Nm for all lifting conditions which failed to be statistically significant (p>0.05). The model type did not have a statistically significant effect on peak L5/S1 moments. Therefore, despite important shoulder joint translations, peak L5/S1 moments were not significantly affected.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0013
Author(s):  
Manish Anand ◽  
Jed A. Diekfuss ◽  
Dustin R. Grooms ◽  
Alexis B. Slutsky-Ganesh ◽  
Scott Bonnette ◽  
...  

Background: Aberrant frontal and sagittal plane knee motor control biomechanics contribute to increased anterior cruciate ligament (ACL) injury risk. Emergent data further indicates alterations in brain function may underlie ACL injury high risk biomechanics and primary injury. However, technical limitations have limited our ability to assess direct linkages between maladaptive biomechanics and brain function. Hypothesis/Purpose: (1) Increased frontal plane knee range of motion would associate with altered brain activity in regions important for sensorimotor control and (2) increased sagittal plane knee motor control timing error would associate with altered activity in sensorimotor control brain regions. Methods: Eighteen female high-school basketball and volleyball players (14.7 ± 1.4 years, 169.5 ± 7 cm, 65.8 ± 20.5 kg) underwent brain functional magnetic resonance imaging (fMRI) while performing a bilateral, combined hip, knee, and ankle flexion/extension movements against resistance (i.e., leg press) Figure 1(a). The participants completed this task to a reference beat of 1.2 Hz during four movement blocks of 30 seconds each interleaved in between 5 rest blocks of 30 seconds each. Concurrent frontal and sagittal plane range of motion (ROM) kinematics were measured using an MRI-compatible single camera motion capture system. Results: Increased frontal plane ROM was associated with increased brain activity in one cluster extending over the occipital fusiform gyrus and lingual gyrus ( p = .003, z > 3.1). Increased sagittal plane motor control timing error was associated with increased brain activity in multiple clusters extending over the occipital cortex (lingual gyrus), frontal cortex, and anterior cingulate cortex ( p < .001, z > 3.1); see Figure 1 (b). Conclusion: The associations of increased knee frontal plane ROM and sagittal plane timing error with increased activity in regions that integrate visuospatial information may be indicative of an increased propensity for knee injury biomechanics that are, in part, driven by reduced spatial awareness and an inability to adequately control knee abduction motion. Increased activation in these regions during movement tasks may underlie an impaired ability to control movements (i.e., less neural efficiency), leading to compromised knee positions during more complex sports scenarios. Increased activity in regions important for cognition/attention associating with motor control timing error further indicates a neurologically inefficient motor control strategy. [Figure: see text]


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


2012 ◽  
Vol 7 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Rafał Stemplewski ◽  
Janusz Maciaszek ◽  
Maciej Tomczak ◽  
Robert Szeklicki ◽  
Dorota Sadowska ◽  
...  

The aim of the study was to compare the effect of exercise on postural control (PC) among the elderly with lower or higher level of habitual physical activity (HPA). The study involved 17 elderly men (mean age 72.9 ± 4.79 years). Mean velocity of the center of pressure (COP) displacements was measured using a force plate both before and after cycle ergometer exercise. A significantly higher increase in mean velocity of COP displacements and its component in the sagittal plane were observed in the group with lower level of HPA in comparison with the group with higher HPA level. Simultaneously, a relatively similar reaction to the exercise in the frontal plane was observed in both groups, possibly connected to the specific type of used exercise, which mainly activated the sagittal muscles.


2011 ◽  
Vol 92 (6) ◽  
pp. 454-463 ◽  
Author(s):  
Sivagnanam Ananthi ◽  
Ramachandran Sarojini Santhosh ◽  
Murugesan Valar Nila ◽  
Namperumalsamy Venkatesh Prajna ◽  
Prajna Lalitha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document