Effect of Wood Species, Amount of Juvenile Wood and Heat Treatment on Mechanical and Physical Properties of Laminated Veneer Lumber

2011 ◽  
Vol 11 (6) ◽  
pp. 980-987 ◽  
Author(s):  
M. Nazerian ◽  
M.D. Ghalehno ◽  
A.B. Kashkooli
2018 ◽  
Vol 7 (3.34) ◽  
pp. 376
Author(s):  
Arun. A ◽  
Dr V.Sathiyamoorthy ◽  
Amirthalingam. P ◽  
Manikandan A ◽  
Manikandan K ◽  
...  

This paper deals with the 7005 aluminium alloy characterization which has similar physical properties to 6061 aluminium alloy, depending on the temper, may be slightly stronger. To increase their mechanical and physical properties silicon carbide had been introduced in it as reinforcement. Based on mass three different compositional were made and mixed thoroughly, and cast. Stir casting method is used for casting proportioned alloys. Heat treatment process is carried out after casting the alloy is mixed in the three proper compositions. Mechanical properties like hardness, Tensile strength and impact strength were conducted and analyzed. Properties can be altered in a better way using silicon carbide as an reinforcement in aluminium-7005.  


2014 ◽  
Vol 493 ◽  
pp. 666-671
Author(s):  
Viktor Malau ◽  
Subagyo Subagyo ◽  
Supriyanto

The objective of this research is to characterize the effects of heat treatment such as quenching, tempering and TiN coating on mechanical and physical properties of duylos 2510 steel. These mechanical properties include wear rate, hardness, impact toughness, whereas physical properties are microstructures. Duylos 2510 steel is a cold work tool steel and has chemical composition (wt %) of 1C; 0,6 Cr; 0,1 V; 1 Mn; 0,25 Si and 0,6 W.Quenching process has been conducted by heating the specimens on austenite temperature of 800 °C with the soaking time of 30 minutes and then cooling these specimens in oil medium. Tempering process was done at temperatures of 100, 200, 300, 400, 500 dan 600 °C with holding time of 2 hours.TiN coating has been deposited on substrates by sputtering technique of Physical Vapor Deposition at temperatures of 100, 150, 200 and 250 °C with sputtering time of 45 minutes. The mechanical and physical properties have been characterized by wear test, Vickers micro hardness test, Charpy impact test, and metallography test. This research was performed at room temperature and the major parameters of this research were tempering and sputtering temperatures.The results show that tempering temperature variations give significant modification of mechanical properties. In general, the Vickers micro-hardness decreases if tempering temperatures of the specimen increase. The highest Vickers micro-hardness of TiN coatings is 290 HV0,01 for the specimen having sputtering temperature of 200 °C. Wear rate and impact energy increase if tempering temperatures increase. The results also show that the Vickers micro-hardness of coated specimens is higher than the micro Vickers hardness of non-coated specimens


2004 ◽  
pp. 61-68

Abstract The metallurgy of aluminum and its alloys offers a range of opportunities for employing heat treatments to obtain desirable combinations of mechanical and physical properties such that castings meet defined temper requirements. This chapter discusses the processes involved in solution heat treatment, quenching, precipitation hardening, and annealing of aluminum alloys. The effects of these processes on dimensional stability and residual stresses are also discussed. Troubleshooting and diagnosis of heat treating problems are covered in the concluding section of the chapter.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2708-2720 ◽  
Author(s):  
Ahmet Can

Heat treatment is an environmentally friendly and efficient way to improve the properties of wood species. These treatments alter the substrates and can influence the surface properties of the varnish coatings. This paper investigated the effects of heat treatment on the physical properties of open and close systems Scots pine (Pinus sylvestris L.) and poplar (Populus euramericana) wood, coated with water-based, polyurethane-based, and oil/wax-based varnishes. Heat treatment was applied at the temperatures of 190, 212 °C for pine and 180, 200 °C for poplar, respectively. Color, gloss, and roughness tests were carried out for each of the coatings. Higher mass loss occurred in pine samples with heat treatment as compared to vacuum-heat treatment. Gloss decreased in OIL+WAX treatment and color change increased after the heat treatment, but these results were inhibited with vacuum-heat treatment. Maximum roughness was obtained in PUR varnishes and minimum roughness in OIL + WAX samples. The low roughness values provide some advantages in application.


2012 ◽  
Vol 2 (3) ◽  
pp. 362-365
Author(s):  
Iqbal S Naji ◽  
◽  
M.F.A.Alias M.F.A.Alias ◽  
Eman M Naser

2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1957 ◽  
Vol 6 (1) ◽  

Abstract WHITE LIGHT-MF is a wrought magnesium-base alloy that does not respond to age-hardening heat treatment for increased hardness and strength. It is a general purpose extrusion alloy for applications where medium strength and economy are prime factors. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Mg-30. Producer or source: Whitelight Magnesium Division.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract ALX is a composition of nonferrous materials with a cobalt base containing chromium, tungsten and carbon. This alloy is commonly supplied in the cast-to-shape form, having an as-cast hardness of Rockwell C60-62 and requiring no further heat treatment. ALX is also supplied as cast tool bit material and is useful where conventional high-speed steels or carbides do not function effectively. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Co-35. Producer or source: Allegheny Ludlum Corporation.


Sign in / Sign up

Export Citation Format

Share Document