Effects of Heat Treatment and Titanium Nitride (TiN) Coating Deposited by Sputtering Technique PVD on Duylos 2510 Tool Steel Substrate

2014 ◽  
Vol 493 ◽  
pp. 666-671
Author(s):  
Viktor Malau ◽  
Subagyo Subagyo ◽  
Supriyanto

The objective of this research is to characterize the effects of heat treatment such as quenching, tempering and TiN coating on mechanical and physical properties of duylos 2510 steel. These mechanical properties include wear rate, hardness, impact toughness, whereas physical properties are microstructures. Duylos 2510 steel is a cold work tool steel and has chemical composition (wt %) of 1C; 0,6 Cr; 0,1 V; 1 Mn; 0,25 Si and 0,6 W.Quenching process has been conducted by heating the specimens on austenite temperature of 800 °C with the soaking time of 30 minutes and then cooling these specimens in oil medium. Tempering process was done at temperatures of 100, 200, 300, 400, 500 dan 600 °C with holding time of 2 hours.TiN coating has been deposited on substrates by sputtering technique of Physical Vapor Deposition at temperatures of 100, 150, 200 and 250 °C with sputtering time of 45 minutes. The mechanical and physical properties have been characterized by wear test, Vickers micro hardness test, Charpy impact test, and metallography test. This research was performed at room temperature and the major parameters of this research were tempering and sputtering temperatures.The results show that tempering temperature variations give significant modification of mechanical properties. In general, the Vickers micro-hardness decreases if tempering temperatures of the specimen increase. The highest Vickers micro-hardness of TiN coatings is 290 HV0,01 for the specimen having sputtering temperature of 200 °C. Wear rate and impact energy increase if tempering temperatures increase. The results also show that the Vickers micro-hardness of coated specimens is higher than the micro Vickers hardness of non-coated specimens

2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract ALUMINUM 319.0 is a general-purpose foundry alloy that is moderately responsive to heat treatment. It has excellent casting characteristics and good mechanical properties. Among its many uses are crankcases, housings, engine parts, typewriter frames and rear-axle housings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as creep and fatigue. It also includes information on low and high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-256. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS T12001 is a general-purpose, tungsten, high-speed steel containing nominally 18% tungsten, 4% chromium and 1% vanadium. It is suitable for practically all high-speed applications. This steel has been the standard of the industry for many years because of its cutting ability, ease of heat treatment and minimum tendency to decarburize. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-495. Producer or source: Tool steel mills.


Alloy Digest ◽  
1979 ◽  
Vol 28 (3) ◽  

Abstract CYCLOPS SCK is a cold-work tool steel with a balanced composition to provide air hardening and an optimum combination of toughness, wear resistance and minimum distortion during heat treatment. Typical applications are shear blades, trimming dies and forming rolls, including grade rolls for cutlery and flatware. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-346. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1996 ◽  
Vol 45 (7) ◽  

Abstract Crucible S7 is a chromium/molybdenum tool steel developed to produce the unusual combination of high shock resistance and toughness together with ease of machining and heat treatment. It is a versatile tool steel applicable for both hot and cold work shock applications. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: TS-543. Producer or source: Crucible Service Centers.


Alloy Digest ◽  
2013 ◽  
Vol 62 (9) ◽  

Abstract Böhler (or Boehler) W403 VMR is a tool steel with outstanding properties, based not only on a modified chemical composition, but on the selection of highly clean raw materials for melting, remelting under vacuum (VMF), optimized diffusion annealing, and a special heat treatment. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on forming and heat treating. Filing Code: TS-721. Producer or source: Böhler Edelstahl GmbH.


2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


2018 ◽  
Vol 3 (1) ◽  
pp. 80-85
Author(s):  
Ernawati Kawa ◽  
Minsyahril Bukit ◽  
Albert Zicko Johannes

Abstrak Telah dilakukan penelitian tentang penentuan sifat mekanis dan fisis batu bata dengan penambahan tempurung kelapa asal alor. Penenlitian ini bertujuan mengetahui kualitas batu bata yang memenuhi standar kelayakan sebagai bahan konstruksi dengan penambahan arang tempurung kelapa aal alor dengan presentasi 0%, 5%, 10%, 15% terhadap tanah liat (lempung). Batu bata dicetak dengan prosedur pemadatan, pengringn dan pembakaran. Setelah prosedur pencetakkan selesai kemudian di lanjutkan dengan pengujian sefat mekanis dan sifat fisis, yaitu uji kuat tekan (compression strength), densitas (density), porositas (porosity) hasil  kuat tekan batu bata didapatkan berdasarkan pengujian: a) uji kuat tekan, batu bata tanpa penambahan (0%) : 4,94 meemenuhi standar kuat tekan kelas 50 (SNI 15-2094-2000), b) uji porositas, batu bata 0% dan 5% : 3,82% dan 17,93% memenuhi standar porositas dengan batas maksimum 20% (SNI 15-2094-2000) dan uji densitas, batu bata tidak ada yang memenuhi standar (SII 0021-1978) Kata kunci: sifat mekanis, sifat fisis, tempurung kelapa, densitas, porositas, kuat tekan Abstract A research had been conducted to determine physical and mechanical properties of the bricks with the addition coconut shell charcoal from alor. This research aims at the quality of the bricks to meet the standars of eligibility as a contruction material. The addition of coconut shell charcoal is variate with the presentage 0%, 5%, 10%, 15% to the clay mass. The brick being printed with procedure compaction, drying, and baking. After the printing procedure is done then next is testing the mechanical and physical properties, that is compression strength test, density test, and porosity test. The brick quality result is obtained based on the test: a) compression strength test, the brick without addition (0%) : 4,94  (SNI 15-2094-2000) is comply with the standard compression strength the class 50 , b) porosity test, the brick 0% and 5% (3,82% and 17,93%) meet the standard with the maximum limit 20% ( SNI 15-2094-2000)  , and c) density test, every bricks does not meet the standard (SII 0021- 1978). Keywords: mechanical properties, physical properties, coconut shell, density, porosity, compression strength


Sign in / Sign up

Export Citation Format

Share Document