scholarly journals Effects of Biotin Supplementation on Milk Production, Milk Composition, Milk Fatty Acids, Ruminal pH, Ammonia Nitrogen and Volatile Fatty Acids in Lactating Dairy Cows

2011 ◽  
Vol 10 (16) ◽  
pp. 2186-2192
Author(s):  
W. Suksombat ◽  
P. Lounglawan ◽  
P. Paengsai
1999 ◽  
Vol 4 (1) ◽  
pp. 35 ◽  
Author(s):  
A.S. AI-Abri ◽  
C.D. Lu ◽  
R.J. Early ◽  
A. Srikandakumar ◽  
O. Mahgoub ◽  
...  

To utilize locally available feed resources with livestock production in hot climates, dried sardines were incorporated into diets for lactating dairy cows. Fourteen Holstein and 13 Australian Milk Zebu multiparous cows were used in a 70-day continuous feeding experiment. lsonitrogenous and isoenergetic diets containing either soybean meal or dried sardines (supplied 40% of dietary crude protein) were fed ad - libitum. Comparisons between diets were made during the 7-week experimental period. The experiment was conducted as a 2 x 2 factorial arrangement of treatment, with diet and breed as main factors. Ruminal pH, ammonia N, total and individual volatile fatty acids concentrations were not altered by the feeding of dried sardines. Intakes of dry matter, energy, crude protein, and acid detergent fiber were lower (P<0.05) in both breeds of cows fed dried sardines. Intakes of ether extract and ash were higher (P<0.05) in cows fed dried sardines. Although it was not statistically significant, milk production was higher (P>0.05) in Holstein cows fed dried sardines than those fed the control diet (16.2 vs 15.1 kg/d). Feeding of dried sardines did not affect milk composition and compositional yields. Milk production was higher (P<0.01) in Holstein than Australian Milk Zebu cows. Effect of diet and breed interaction on milk production was significant (P<0.01 ). Potential of feeding marine proteins may be higher for higher milk producers (Holstein) than lower producers (Australian Milk Zebu). Reproduction parameters, body condition scores, and heat-stress associated parameters were not affected by the feeding of dried sardines. This study suggests that dried sardines could be incorporated into diets of lactating dairy cows without affecting milk production.


2000 ◽  
Vol 40 (6) ◽  
pp. 773 ◽  
Author(s):  
S. C. Valentine ◽  
E. H. Clayton ◽  
G. J. Judson ◽  
J. B. Rowe

Milk production and composition were measured for 63 days in 153 Holstein–Friesian cows offered either 7, 10 or 13 kg/day (as fed) of a rolled, 74% barley/26% lupin grain mixture together with either no feed additive, 300 mg/day of virginiamycin (VM) or 300 mg/day of virginiamycin plus 200 g/day of sodium bicarbonate (VM + NaHCO3). All cows were fed 1 kg/day of a pelleted mineral supplement containing the additives. The cows were grazed as a single herd on perennial ryegrass–subterranean clover pasture with pasture silage available during periods of pasture shortage. Rumen fluid was analysed for pH and volatile fatty acids, blood for plasma glucose, beta-hydroxy-butyrate, urea and D- and L-lactic acid, faeces for dry matter and pH, and both urine and milk for urea and sodium. The incidence of grain bloat in all treatments was low. There was no main effect of dietary additive treatment on grain intake, but at the highest grain level, cows offered VM or VM + NaHCO3 ate more grain than those offered no dietary additive. There were no significant differences between the dietary additive treatments in milk production, milk composition, cell count, liveweight and condition score. Mean daily covariance-corrected yields of milk and protein (kg), and milk protein content (g/kg) respectively, were significantly (P<0.01) greater for cows fed 11 (28.0, 0.86, 30.6) and 14 kg/day (28.7, 0.88, 31.0) of concentrate compared with those fed 8 kg/day (26.4, 0.78, 29.7). Mean milk fat content (g/kg) was significantly (P<0.01) lower in milk from cows fed 14 kg/day (32.0) of concentrate compared with those fed 8 (35.9) or 11 (34.7) kg/day. There were no significant differences between concentrate feeding levels in milk fat yield or milk somatic cell count. Covariance-corrected liveweight and condition score were significantly (P<0.01) higher for cows fed 14 kg/day of concentrate compared with cows fed at the lower concentrate levels. There were no significant interactions between concentrate level and dietary additive for all milk production parameters. No significant differences were recorded between the different levels of concentrate in the concentration of total rumen volatile fatty acids, or in blood plasma concentrations of glucose and L-lactate. The rumen molar proportions of acetate and butyrate were significantly (P<0.01) lower, and propionate and valerate significantly (P<0.01) higher at the higher levels of concentrate offered. The molar ratio of acetate plus butyrate to propionate was significantly (P<0.01) higher in cows fed 8 kg/day of concentrate compared with cows fed 11 and 14 kg/day. It was concluded that the inclusion of virginiamycin, or virginiamycin together with sodium bicarbonate, in high grain rations cannot be recommended for improving milk production in grazing dairy cows already adapted to high levels of barley and lupin grain.


2013 ◽  
Vol 153 (1-3) ◽  
pp. 73-80 ◽  
Author(s):  
E. Abdi ◽  
F. Fatahnia ◽  
M. Dehghan Banadaki ◽  
A. Azarfar ◽  
A. Khatibjoo

2021 ◽  
Vol 26 (4) ◽  
pp. 2788-2792
Author(s):  
VASILE BOGHIAN

The ruminal acidosis is a decrease in the ruminal pH by the accumulation of acidic metabolites at this level. As a result, the proportion of ruminal volatile fatty acids and glycaemia changes with immediate repercussions on the milk production. Of the total ruminant-reticular indigestions diagnosed in a lot of 370 cows, 37.9% were represented by ruminal acidosis. Out of these, most of the cases (90.9%) had a subacute evolution, which implies difficulties of diagnosis under farm conditions. On the other hand, the amount of milk was, on average, smaller with 1.7 liters in cows with ruminal acidosis compared to the clinically healthy cows. Milk fat decreased from 3.8% to 2.8% in sick cows, by an average of 1% and had a coefficient of variation of individual values almost double compared to the values obtained in clinically healthy cows. This shows the direct implication of ruminal acidosis over milk production. Appart of ruminal paresis and indigestion, milk production’s impairment is an important clinical sign in most of the dairy cows with ruminal acidosis.


2019 ◽  
Vol 15 (02) ◽  
pp. 39-41
Author(s):  
H H Panchasara ◽  
A B Chaudhari ◽  
D A Patel ◽  
Y M Gami ◽  
M P Patel

The study was conducted to evaluate the effect of feeding herbal galactogogue preparation (Sanjivani biokseera) on the milk yield and milk constituents in lactating Kankrej cows. Thirty-two lactating Kankrej cows in their 1st to 6th lactation were taken for the experiment from 3 days after calving up to 52 days postpartum. All the animals were fed as per the standard seasonally available roughages and concentrates to meet their nutritional requirements. The cows were randomly divided into two uniform groups of 16 cows in each according to initial milk yield and milk composition. The animals in group-I were not given any supplement and served as control. The animals in group-II were given Sanjivani biokseera (Naturewell Industries) @ 60 g per day for 1-month, commencing 3 days after calving, in addition to the usual feeds/fodders. A clear difference was observed in milk yield from day 8 onward of experiment between groups with significant (plessthan0 0.05) higher values from day 16-52 in cows fed herbal galactogogue as compared to control, but no such distinct effect on milk constituents was observed on day 52 when analyzed. The use of herbal galactogogue significantly (p lessthan 0.05) increased the overall average of 52 days milk production, which was 9.34 ± 0.21 lit/day in supplemented as compared to 7.75 ± 0.26 lit/day in control animals. It was concluded that herbal galactogogue (Sanjivani biokseera) could increase milk yield in lactating dairy cows through its galactopoetic property and improved rumen environment.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 169 ◽  
Author(s):  
Mancoba Mangwe ◽  
Racheal Bryant ◽  
Pablo Gregorini

The goals of the current study were to investigate the effects of including chicory (Cichorium intybus L.) into the traditional feeding regime of ryegrass/white clover (Lolium perenne L./Trifolium repens L.), and time of its allocation on milk production, rumen fermentation, and FA composition of milk and rumen digesta of dairy cows. Nine groups of four cows were allocated one of three replicated feeding regimes: (1) ryegrass/white clover only (RGWC), (2) ryegrass/white clover + morning allocation of chicory (CHAM), and (3) ryegrass/white clover + afternoon allocation of chicory (CHPM). One cow per group had a rumen cannulae fitted. Treatment did not affect total grazing time or estimated dry matter intake, but cows ruminated more when fed RGWC than chicory. Allocating chicory in the afternoon elevated milk production compared with RGWC and CHAM. Milk from cows grazing chicory contained greater concentrations of polyunsaturated FA (PUFA) such as C18:3 c9, 12, 15 and C18:2 c9, 12 than those on RGWC. As with milk, rumen digesta concentration of PUFA increased when cows grazed on chicory rather than RGWC, which corresponded with lower concentrations of intermediate vaccenic and biohydrogenation end-product stearic acid for cows grazing on chicory. Mean ruminal pH was lower for cows offered chicory than those on RGWC, reflecting greater rumen concentrations of volatile fatty acids (VFA) for cows fed chicory. Allocating chicory during the afternoon is a useful strategy that can translate to improved milk production. The lower rumen pH, lower concentration of vaccenic and stearic acids, and elevated concentration of PUFA in the rumen of cows fed chicory suggest reduced biohydrogenation and may explain the elevated concentration of PUFA in the milk of cows fed chicory compared with those fed RGWC.


2019 ◽  
Vol 3 (4) ◽  
pp. 1133-1142 ◽  
Author(s):  
Rodrigo O Rodrigues ◽  
Reinaldo F Cooke ◽  
Franciele C Firmino ◽  
Mayara K R Moura ◽  
Beatriz F Angeli ◽  
...  

Abstract This experiment compared milk production, milk composition, and physiological responses in lactating dairy cows supplemented with or without a mixture of condensed tannins, encapsulated cinnamaldehyde, curcumin, capsaicin, and piperine. Thirty-six lactating, multiparous, pregnant ¾ Holstein × ¼ Gir cows were maintained in a single drylot pen with ad libitum access to water and a total-mixed ration and were milked twice daily (d –7 to 84). On d 0, cows were ranked by days in milk (86 ± 3 d), milk yield (27.8 ± 1.0 kg), body weight (BW; 584 ± 10 kg), and body condition score (BCS; 3.04 ± 0.06) and assigned to receive (SUPP; n = 18) or not (CON; n = 18) 30 g/cow daily (as-fed basis) of Actifor Pro (Delacon Biotechnik GmbH; Steyregg, Austria). From d 0 to 84, SUPP cows individually received (as-fed basis) 15 g of Actifor Pro mixed with 85 g of finely ground corn through self-locking headgates before each milking of the day. Each CON cow concurrently received 85 g (as-fed basis) of finely ground corn through self-locking headgates. Throughout the experimental period (d –7 to 84), cows from both treatments were administered 500 mg of sometribove zinc at 14-d intervals and were monitored daily for morbidity, including clinical mastitis. Individual milk production was recorded daily, whereas milk samples were collected weekly for analysis of milk composition. Cow BW, BCS, and blood samples were also collected weekly. Cows receiving SUPP gained more BCS (P = 0.05) and had greater (P = 0.04) milk yield during the experiment compared with CON cows (0.22 vs. 0.07 of BCS, SEM = 0.05; 29.5 vs. 27.9 kg/d, SEM = 0.5). Milk composition did not differ (P ≥ 0.15) between SUPP and CON cows; hence, SUPP cows also had greater (P ≤ 0.02) production of fat-corrected and energy-corrected milk. Incidence of clinical mastitis did not differ (P ≥ 0.49) between SUPP and CON cows. No treatment differences were also detected (P ≥ 0.21) for serum concentrations of glucose and serum urea N. Mean serum haptoglobin concentration during the experiment was greater (P = 0.05) in CON vs. SUPP cows. Cows receiving SUPP had less (P ≤ 0.04) serum cortisol concentrations on d 21 and 42, and greater (P ≤ 0.05) serum concentrations of insulin-like growth factor-I on d 7, 35, and 63 compared with CON cows (treatment × day interactions; P ≤ 0.02). Collectively, supplementing phytogenic feed ingredients improved nutritional status and milk production of lactating ¾ Holstein × ¼ Gir cows.


1993 ◽  
Vol 69 (2) ◽  
pp. 385-396 ◽  
Author(s):  
Jan Dijkstra ◽  
Huug Boer ◽  
Jaap Van Bruchem ◽  
Marianne Bruining ◽  
Seerp Tamminga

The effect of rumen liquid volume, pH and concentration of volatile fatty acids (VFA) on the rates of absorption of acetic, propionic and butyric acids from the rumen was examined in lactating dairy cows. Experimental solutions introduced into the emptied, washed rumen comprised two different volumes (10 or 30 1), four levels of pH (4.5, 5.4, 6.3, 7.2) and three levels of individual VFA concentrations (20, 50 or 100 mM-acetic, propionic or butyric acid). All solutions contained a total of 170 mM-VFA and an osmotic value of 400 mOsmol/l. Absorption rates were calculated from the disappearance of VFA from the rumen corrected for passage with liquid phase to the omasum. An increase in initial fluid pH caused a reduction in fractional absorption rates of propionic and butyric acids. Increasing the initial pH from 4.5 to 7.2 reduced fractional absorption rates of acetic, propionic and butyric acids from 0.35, 0.67 and 0.85 to 0.21, 0.35 and 0.28/h respectively. The fractional absorption rates of all VFA were reduced (P < 0.05) by an increase in initial rumen volume. The fractional absorption rate of acetic acid was lower (P < 0.05) at an initial concentration of 20 mM than of 50 mM. The fractional absorption rate of propionic acid tended (P < 0.10) to decrease as the level of concentration increased while fractional absorption rate of butyric acid was not affected by butyric acid concentration. These results indicate that relative concentrations of VFA in rumen fluid might not represent relative production rates and that attempts to estimate individual VFA production from substrate digestion must take account of pH and VFA concentration.


Sign in / Sign up

Export Citation Format

Share Document