Effect of virginiamycin and sodium bicarbonate on milk production, milk composition and metabolism of dairy cows fed high levels of concentrates

2000 ◽  
Vol 40 (6) ◽  
pp. 773 ◽  
Author(s):  
S. C. Valentine ◽  
E. H. Clayton ◽  
G. J. Judson ◽  
J. B. Rowe

Milk production and composition were measured for 63 days in 153 Holstein–Friesian cows offered either 7, 10 or 13 kg/day (as fed) of a rolled, 74% barley/26% lupin grain mixture together with either no feed additive, 300 mg/day of virginiamycin (VM) or 300 mg/day of virginiamycin plus 200 g/day of sodium bicarbonate (VM + NaHCO3). All cows were fed 1 kg/day of a pelleted mineral supplement containing the additives. The cows were grazed as a single herd on perennial ryegrass–subterranean clover pasture with pasture silage available during periods of pasture shortage. Rumen fluid was analysed for pH and volatile fatty acids, blood for plasma glucose, beta-hydroxy-butyrate, urea and D- and L-lactic acid, faeces for dry matter and pH, and both urine and milk for urea and sodium. The incidence of grain bloat in all treatments was low. There was no main effect of dietary additive treatment on grain intake, but at the highest grain level, cows offered VM or VM + NaHCO3 ate more grain than those offered no dietary additive. There were no significant differences between the dietary additive treatments in milk production, milk composition, cell count, liveweight and condition score. Mean daily covariance-corrected yields of milk and protein (kg), and milk protein content (g/kg) respectively, were significantly (P<0.01) greater for cows fed 11 (28.0, 0.86, 30.6) and 14 kg/day (28.7, 0.88, 31.0) of concentrate compared with those fed 8 kg/day (26.4, 0.78, 29.7). Mean milk fat content (g/kg) was significantly (P<0.01) lower in milk from cows fed 14 kg/day (32.0) of concentrate compared with those fed 8 (35.9) or 11 (34.7) kg/day. There were no significant differences between concentrate feeding levels in milk fat yield or milk somatic cell count. Covariance-corrected liveweight and condition score were significantly (P<0.01) higher for cows fed 14 kg/day of concentrate compared with cows fed at the lower concentrate levels. There were no significant interactions between concentrate level and dietary additive for all milk production parameters. No significant differences were recorded between the different levels of concentrate in the concentration of total rumen volatile fatty acids, or in blood plasma concentrations of glucose and L-lactate. The rumen molar proportions of acetate and butyrate were significantly (P<0.01) lower, and propionate and valerate significantly (P<0.01) higher at the higher levels of concentrate offered. The molar ratio of acetate plus butyrate to propionate was significantly (P<0.01) higher in cows fed 8 kg/day of concentrate compared with cows fed 11 and 14 kg/day. It was concluded that the inclusion of virginiamycin, or virginiamycin together with sodium bicarbonate, in high grain rations cannot be recommended for improving milk production in grazing dairy cows already adapted to high levels of barley and lupin grain.

2010 ◽  
Vol 90 (2) ◽  
pp. 115-127 ◽  
Author(s):  
H V Petit

Flaxseed contains approximately 55% of total fatty acids of the oil as ?-linolenic acid and is rich in lignans, which are strong antioxidants. Diets rich in omega-3 fatty acids and antioxidants are known to have beneficial effects on human health such as a decrease in the incidence of cancer, cardiovascular diseases, hypertension, and arthritis. Flaxseed could then be an interesting natural feed to consider for changing milk composition. Cyanogenic glycosides (linustatin and neolinustatin) are present in flaxseed, but the concentration of hydrocyanic acid is very low in milk and ruminal fluid of cows fed flaxseed products. In general, feeding up to 15% of the total dry matter as whole flaxseed has a limited effect on dry matter intake. Heat treatments such as micronization and extrusion have no effect on dry matter intake and the effect of formaldehyde treatment on feed intake is unclear. The effects of flaxseed supplementation on milk production of dairy cows in the early stage of lactation have been neutral. Diet supplementation with whole flaxseed has had no effect on milk yield and composition of dairy cows in the mid or late stages of lactation. Physical processing of flaxseed increased milk production although heat treatment did not. Results on the effect of flaxseed processing on overall milk fat concentration have been controversial, but heat and formaldehyde treatments had no effect. Flaxseed supplementation had no effect on milk fat and protein concentrations, and processing of flaxseed had little effect. The extent of change in the concentration of fatty acids in milk is generally proportional to the level of inclusion of flaxseed in the diet. In conclusion, feeding flaxseed does not affect milk production or composition in the large majority of studies, but its long-term effects on health of cows and productivity still need to be determined.Key words: Review, flax, dairy


2001 ◽  
Vol 2001 ◽  
pp. 194-194
Author(s):  
T. Yan ◽  
R. E. Agnew

It is well recognised that the fat and protein concentration in the milk of dairy cows is influenced by volatile fatty acids (VFAs) produced in the rumen. There has however been little information available on models to predict milk composition from rumen VFAs in the literature. The objective of the present study was to develop empirical relationships to predict milk fat and protein concentration using rumen VFA data.


2021 ◽  
Vol 26 (4) ◽  
pp. 2788-2792
Author(s):  
VASILE BOGHIAN

The ruminal acidosis is a decrease in the ruminal pH by the accumulation of acidic metabolites at this level. As a result, the proportion of ruminal volatile fatty acids and glycaemia changes with immediate repercussions on the milk production. Of the total ruminant-reticular indigestions diagnosed in a lot of 370 cows, 37.9% were represented by ruminal acidosis. Out of these, most of the cases (90.9%) had a subacute evolution, which implies difficulties of diagnosis under farm conditions. On the other hand, the amount of milk was, on average, smaller with 1.7 liters in cows with ruminal acidosis compared to the clinically healthy cows. Milk fat decreased from 3.8% to 2.8% in sick cows, by an average of 1% and had a coefficient of variation of individual values almost double compared to the values obtained in clinically healthy cows. This shows the direct implication of ruminal acidosis over milk production. Appart of ruminal paresis and indigestion, milk production’s impairment is an important clinical sign in most of the dairy cows with ruminal acidosis.


1990 ◽  
Vol 70 (3) ◽  
pp. 875-886 ◽  
Author(s):  
J. J. McKINNON ◽  
D. A. CHRISTENSEN ◽  
B. LAARVELD

Two 4 × 4 Latin square feeding trials were conducted to investigate the influence of 0.75% sodium bicarbonate (NaHCO3), 0.75% potassium bicarbonate (KHCO3) and 0.66% ammonium chloride (NH4Cl) on production and acid-base parameters of dairy cows. Buffer supplementation did not improve feed intake or milk production compared to the control ration of 50% concentrate, 50% barley silage (DM basis). Apparent digestibilities of dry matter, acid detergent fiber and crude protein were not influenced by treatment. Buffer supplementation resulted in an increase in milk fat and total solids content in trial 2 but not in trial 1. In comparison to the two buffered rations, NH4Cl induced a mild form of acidosis as evidenced from reduced (P < 0.05) blood pH, HCO3, BE and urine pH values in trial 1 and blood HCO3 and urine pH in trial 2. In addition, DM and concentrate intake were reduced in trial 2 with NH4Cl supplementation. Treatment did not affect the molar proportions of the major rumen volatile fatty acids (VFA). It is concluded that milk fat production did not respond as expected to buffer supplementation due to a failure to influence the pattern of rumen VFA production. The control ration did not stress the acid-base homeostasis of the animal. Consequently, buffer supplementation did not lead to any improvement in systemic acid-base status. Key words: Dairy cattle, milk production, potassium and sodium bicarbonate, ammonium chloride, acid-base balance


Author(s):  
J G Doherty ◽  
C S Mayne

Several studies have shown increased silage dry-matter intake (SDMI) and improved milk fat concentrations in dairy cows offered restricted fermented grass silages compared to more extensively fermented silages. A recent study suggested that differences in silage intakeper serather than an alteration in rumen fermentation may be responsible for the changes in milk composition observed in the previous studies (Doherty and Mayne, 1993). The aim of the present study was to examine the effect of changes in concentrate composition on milk production parameters in dairy cows offered grass silages of contrasting fermentation type.Two direct cut grass silages were prepared using either an inoculant, containing a single strain ofLactobacillus plantarum, (Ecosyl, 3 1/t fresh weight, Zeneca Products Ltd) or a mixture of aliphatic carboxylic acids (Maxgrass, 6 1/t fresh weight, BP Chemicals Ltd). Two concentrates (high starch or high fibre) were formulated containing either: barley, 300; wheat, 355; and soyabean-meal, 270 g/kg (high starch) or unmolassed sugar-beet pulp, 555; citrus pulp, 100; and soyabean-meal, 270 g/kg (high fibre).


2011 ◽  
Vol 79 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Qendrim Zebeli ◽  
Sarah J Terrill ◽  
Alberto Mazzolari ◽  
Suzanna M Dunn ◽  
Wen Z Yang ◽  
...  

This study evaluated the effects of intraruminal administration ofMegasphaera elsdeniion ruminal fermentation patterns, the profile of plasma metabolites, and milk yield and composition of mid-lactation dairy cows. Eight primiparous, ruminally cannulated Holstein cows were arranged in a paired 2×2 crossover design. Cows were randomly assigned to one of two treatments: 1) intraruminal inoculation of 35 ml suspension per day ofM. elsdeniiATCC 25940 (MEGA), containing 108cfu/ml of bacteria, dissolved in 35 ml of saline (0·15m), or 2) carrier alone (35 ml saline; CTR). Both postprandial and preprandial rumen volatile fatty acids (VFA) and plasma metabolite measurements were analysed. Postprandial VFA patterns were affected the most, with butyrate (P<0·01) and valerate (P<0·01) proportions increasing, and acetate (P<0·01), isobutyrate (P=0·05) and isovalerate (P<0·01) decreasing in MEGA cows. Preprandial data measured at various days showed that MEGA dosage tended to increase the molar proportion of propionate (P=0·09) and lower the acetate to propionate ratio (P=0·07) in the rumen fluid. There was no effect of treatment on rumen pH and on the concentration of lactate in the rumen as well as on selected preprandial plasma metabolites. Postprandial plasma concentrations of cholesterol tended to increase (P=0·07) in MEGA cows compared with CTR. Concentrations of non-esterified fatty acids (NEFA) in the plasma were lower in MEGA cows after the morning feeding (P<0·01). Sampling hour also affected plasma NEFA in this study. Plasma β-hydroxybutyrate (BHBA) were not affected by the treatment (P>0·05); however, after the morning feeding BHBA concentration was increased in both groups of cows. Dry matter intake and milk yield and composition were not affected by treatment. In conclusion, results indicate thatM. elsdeniihas the potential to modulate the rumen fermentation profile in mid-lactation Holstein cows, but these effects were only slightly reflected in changes in plasma metabolites and milk composition.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.


2005 ◽  
Vol 85 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Rachel Gervais ◽  
Richard Spratt ◽  
Martin Léonard ◽  
P. Yvan Chouinard

Dietary conjugated linoleic acid (CLA) supplements have been shown to reduce milk fat synthesis in dairy cows. A rumen-inert source of CLA is required for commercial feed applications. The conversion of dietary lipids to a calcium salt is considered as a method to counter the extensive hydrogenation of dietary lipids that occurs in the rumen. Our objective was to determine whether feeding calcium salts of CLA under commercial conditions would affect milk production, milk composition and blood metabolic profile. A total of 240 dairy cows from eight farms were blocked according to the calving date, and randomly assigned to four treatments providing CLA at 0, 8, 16 and 32 g d-1. Milk production was recorded and milk was sampled on day 0, 7, 14, 28 and 42 of the feeding period. Blood samples were taken on day 42 from early-lactating cows (< 157 d in milk) to determine the metabolic profile. Milk fat yield was decreased 11, 20 and 28%, and milk fat concentration was reduced 13, 22 and 28% (linear; P < 0.001) when cows received 8, 16 and 32 g d-1 of CLA, respectively. Milk yield, milk protein and blood metabolic parameters were not affected by experimental treatments. Calcium salts of CLA can be used as an effective tool to manage milk fat content on commercial dairy farms. Key words: Conjugated linoleic acid, milk fat, ruminally inert fat


2005 ◽  
Vol 85 (3) ◽  
pp. 413-416 ◽  
Author(s):  
F. B. Cavalieri ◽  
G. T. Santos ◽  
M. Matsushita ◽  
H. V. Petit ◽  
L. P. Rigolon ◽  
...  

Cows were fed whole flaxseed or calcium salts of soybean oil as a fat source. Cows fed flaxseed had lower (P < 0.01) milk yield and higher (P < 0.01) percentages of fat and protein than cows fed calcium salts. Feeding whole flaxseed and calcium salts of soybean oil increased, respectively, the concentrations of alpha-linolenic acid and conjugated linoleic acid in milk. Key words: Flaxseed, fatty acids, fat supplement


Sign in / Sign up

Export Citation Format

Share Document