Effects of Calcium (Ca), Phosphorus (P) and Manganese (Mn) Supplementation during Oil Palm Frond Fermentation by Phanerochaete chrysosporium on Rumen Fluid Characteristics and Microbial Protein Synthesis

2017 ◽  
Vol 16 (6) ◽  
pp. 393-399 ◽  
Author(s):  
Novirman Jamarun ◽  
Mardiati Zain ◽  
Arief . ◽  
Roni Pazla
2011 ◽  
Vol 11 (2) ◽  
pp. 29-34 ◽  
Author(s):  
Novita Hindratiningrum ◽  
Muhamad Bata ◽  
Setya Agus Santosa

Products of rumen fermentation and protein microbial of dairy cattle feed with rice bran ammonization and some feedstuffs as an energy sourcesABSTRACT. This study aims to examine the energy sources of feed ingredients that can increase the production of Volatile Fatty Acids (VFA), N-NH3, microbial protein synthesis, total gas production and metabolic energy. The material used is as a source of rumen fluid inoculum from Frisian Holstein cows (FH) females, amoniasi rice straw, salt, mineral mix brand "Ultra Minerals' production Eka Farma Semarang, onggok wet and dry, corn, and rice bran. Observed variable is the concentration of (VFA), N-NH3, rumen microbial protein synthesis, and total gas production. Based on the analysis of diversity seen any significant effect (P0.05) on total VFA concentration, N-NH3 and total gas but had no effect (P0.05) on microbial protein synthesis. Conclusion of research is the provision of energy sources with rice bran treatment, onggok wet and dry corn flour can be used as fermentable carbohydrates on feed hay amoniasi in vitro.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Roni Pazla ◽  
Novirman Jamarun ◽  
Fauzia Agustin ◽  
Mardiati Zain ◽  
Arief Arief ◽  
...  

Abstract. Pazla R, Jamarun N, Agustin F, Zain M, Cahyani NO. 2020. Effects of supplementation with phosphorus, calcium and manganese during oil palm frond fermentation by Phanerochaete chrysosporium on ligninase enzyme activity. Biodiversitas 21: 1833-1838. The objective of this study was to evaluate the effects of supplementation with phosphorus (P) in combination with calcium (Ca) and manganese (Mn) during oil palm frond (OPF) fermentation by Phanerochaete chrysosporium on ligninase enzyme activity and lignin degradation. This study was carried out using a randomized complete design with 3 treatments (addition of P, Ca and Mn) and 5 replicates. The following treatments were performed: T1 (P 1000 + Ca 2000 + Mn 150 ppm), T2 (P 1500 + Ca 2000 + Mn 150 ppm), and T3  (P 2000 + Ca 2000 +Mn 150 ppm). The data were subjected to an analysis of variance (ANOVA), and differences between treatment means were tested using Duncan's multiple range test (DMRT). The parameters measured were as follows: lignin peroxidase (LiP) activity (U/mL), manganese peroxidase (MnP) activity (U/mL), crude protein (CP) content (%), crude fiber (CF) content (%) and the decrease in lignin (%). The results revealed a significant increase in LiP activity and CP content and a decrease in the lignin content (p<0.05) by the addition of P in the T3 treatment. However, the treatment nonsignificantly increased (p>0.05) MnP activity and significantly decreased (P<0.05) the CF content. In conclusion, supplementation of the OPF fermentation process with P 2000, Ca 2000, and Mn 150 ppm resulted in the highest ligninase enzyme activity and in decreased lignin content.


Pastura ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 47
Author(s):  
Afduha Nurus Syamsi ◽  
Fransisca Maria Suhartati ◽  
Wardhana Suryapratama

An experiment was aimed to assess the use of the legume leaf as a source of protein feedstuff and levels of synchronization protein-energy (SPE) index in the diet of cattles on ammonia (N-NH3) and microbial protein synthesis (MPS). In vitro techniques was done. The research was used a completely randomized design (CRD), with factorially pattern (2x3), the first factor was the two species of legume (Sesbania leaves and Leucaena leaves) and the second factor was the three level of the SPE index (0.4, 0.5, and 0.6), there were 6 treatment combinations and each was 4 replicates. The results showed that no interaction between legume with SPE index, but each factor was significantly effect (P<0.05) on N-NH3 of rumen fluid and MPS. The research concluded that Leucaena leaf is a legume that is better than Sesbania leaf in terms of their ability toincrease MPS. SPE index is the best in producing MPS at level 0.6. Key words: Legume, synchronization of protein and energy index, ammonia, microbial protein synthesis


2001 ◽  
Vol 2001 ◽  
pp. 28-28
Author(s):  
J.P. Russi ◽  
R.J. Wallace ◽  
C.J. Newbold

Peptides and to a lesser extent amino acids accumulate in rumen fluid in the early post feeding period and rapidly decline thereafter (Broderick & Wallace, 1988). Numerous studies have demonstrated benefits to feeding peptides, in terms of increased microbial growth in the rumen (Newbold, 1999). However, given that peptides will only be available in the rumen for a short time after feeding it may be necessary to match supply of peptides and energy in the rumen to maximise the stimulation in microbial activity. The objective of this study was thus to investigate if microbial protein synthesis in rumen fluid would be enhanced by a synchronous provision of peptides and energy.


2017 ◽  
Vol 57 (8) ◽  
pp. 1702 ◽  
Author(s):  
M. K. Bowen ◽  
D. P. Poppi ◽  
S. R. McLennan

The efficiency of microbial protein synthesis (EMPS) in cattle grazing a range of tropical pasture types was examined using a new method of intra-jugular infusion of chromium–EDTA to estimate urinary excretion of purine derivatives. Seven pasture types were studied in south-eastern Queensland, Australia, over a 13-month period. These included native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii) studied in the early wet, the wet–dry transition and the dry season; introduced tropical grass (C4) pasture (Bothriochloa insculpta) in the mid-wet season; two introduced tropical legume species (C3; Lablab purpureus and Clitoria ternatea); and the temperate-grass (C3) pasture, ryegrass (Lolium multiflorum). There was a large range in EMPS across pasture types, with a range of 26–209 g microbial crude protein per kilogram digestible organic matter intake (DOMI). Estimated rumen-degradable protein (RDP) supply (42–525 g/kg DOMI) was the major factor associated with EMPS across the range of pasture types studied. EMPS in steers grazing all tropical grass pastures was low (&lt;130 g/kg DOMI) and limited by RDP supply. Negative linear relationships (P &lt; 0.05) between EMPS and concentrations of both neutral detergent fibre and acid detergent fibre in extrusa were evident. However, non-fibre carbohydrate in extrusa, total non-structural carbohydrate concentration in plucked pasture leaf, rumen fluid and particle dilution rate, protozoal concentration in rumen fluid and rumen fluid pH were not correlated with EMPS. It was concluded that EMPS was well below 130 g microbial crude protein per kilogram DOMI when cattle grazed unfertilised, tropical grass pastures in south-eastern Queensland and that RDP was the primary limiting nutrient. High EMPS was associated with a very high RDP, vastly in excess of RDP requirements by microbes.


1981 ◽  
Vol 45 (3) ◽  
pp. 587-604 ◽  
Author(s):  
J. C. Mathers ◽  
E. L. Miller

1. In a randomized block design, four sheep were given 800 g daily of diets containing: chopped lucerne (L), chopped lucerne–rolled barley (2:1; LB), rolled barley–chopped lucerne (2:1; BL), rolled barley (B); each diet was supplemented with minerals, vitamins and urea as considered necessary. Chromic oxide was included in the diets as a flow marker.2. Flows of organic matter (OM) and non-ammonia-nitrogen (NAN) to the small intestine (SI) were measured and microbial protein was identified by a35S-incorporation procedure.3. OM disappearance in the rumen increased linearly with increasing inclusion of barley in the diet but there was no significant change in microbial NAN flow to the SI so that the yield of microbial NAN (g)/kg fermented OM (FOM) decreased from 29.6 (diet L) to 22.7 (diet B). Changes in the energetic efficiency of microbial protein synthesis appeared to be unrelated to alterations in rumen fluid volatile fatty acid (VFA) proportions or in rumen fluid dilution rate (D).4. The degradability of dietary protein (non-urea-N), estimated using the35S procedure, was 0.72, 0.76, 0.86 and 0.86 for diets L, LB, BL and B respectively. Similar values were obtained from concurrent polyester-bag experiments when the fractional outflow rate of undergraded protein from the rumen (k) was assumed to be 0.046.


Sign in / Sign up

Export Citation Format

Share Document