Effects of the Negative Index of a Left-Handed Material on Resonant Transmission Through Fabry-Perot Resonators

2007 ◽  
Vol 50 (5) ◽  
pp. 1252 ◽  
Author(s):  
Chul-Sik Kee
2006 ◽  
Vol 919 ◽  
Author(s):  
Valerie Browning ◽  
Minas H Tanielian ◽  
Richard W. Ziolkowski ◽  
Nader Engheta ◽  
David R. Smith

AbstractIn the quest for ever smaller, lighter weight, and conformal components and devices for radar and communication applications, researchers in the RF community have increasingly turned to artificially engineered, composite structures (or “metamaterials”) in order to exploit the extraordinary electromagnetic response these materials offer. One particularly promising class of metamaterials that has recently received a great deal of attention are “left-handed” or negative index materials. Because these metamaterials exhibit the unique ability to bend and focus light in ways no other conventional materials can, they hold great potential for enabling a number of innovative lens and antenna structures for a broad range of commercial and DoD relevant applications. Exploring the possible implementation of negative index materials for such applications will require significant enhancements in the properties of existing Negative Index Materials (NIM) (bandwidth, loss, operational frequency, etc.), as well as improved understanding of the physics of their electromagnetic transport properties. For this reason the Defense Advanced Research Project Agency (DARPA) has initiated a program that seeks to further develop and demonstrate NIM for future DoD missions including, but not limited to, the following: 1) lightweight, compact lenses with improved optics; 2) sub wavelength/high resolution imaging across the electromagnetic spectrum; 3) novel approaches to beam steering for radar, RF, and/or optical communications; and 4) novel approaches for integrating optics with semiconductor electronics. A brief overview of the salient properties of NIM will be presented as well as a general discussion of a few of their potential applications.


2011 ◽  
Vol 675-677 ◽  
pp. 1077-1080 ◽  
Author(s):  
Ou Yang Hong ◽  
Xin Hua Deng

The band structure and photonic spectrum of one dimensional Thue-Morse quasicrystal composed by negative-index materials and positive-index materials are studied. We show that a new type of the omnidirectional reflection band (ORB) exists in Thue-Morse photonic heterostructures. Compared to a single Thue-Morse quasicrystal, the frequency range of the ORB in a Thue-Morse photonic heterostructure can be notably enlarged, and the width and location of the ORB do not change with Thue-Morse order. The lower edge of the ORB depends only on transverse electric (TE) polarization, while the higher edge of the ORB depends only on transversemagnetic (TM) polarization. These results imply potential applications in improving planar microcavities, optical fibers, and Fabry–Perot resonators, etc.


2006 ◽  
Vol 3 (2) ◽  
pp. 189-218 ◽  
Author(s):  
Victor Veselago ◽  
Leonid Braginsky ◽  
Valery Shklover ◽  
Christian Hafner

The main directions of studies of materials with negative index of refraction, also called left-handed or metamaterials, are reviewed. First, the physics of the phenomenon of negative refraction and the history of this scientific branch are outlined. Then recent results of studies of photonic crystals that exhibit negative refraction are discussed. In the third part numerical methods for the simulation of negative index material configurations and of metamaterials that exhibit negative index properties are presented. The advantages and the shortages of existing computer packages are analyzed. Finally, details of the fabrication of different kinds of metamaterials are given. This includes composite metamaterials, photonic crystals, and transmission line metamaterials for different wavelengths namely radio frequencies, microwaves, terahertz, infrared, and visible light. Furthermore, some examples of practical applications of metamaterials are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Haixia Liu ◽  
Shuo Lei ◽  
Xiaowei Shi ◽  
Long Li

Metamaterial superstrate is a significant method to obtain high directivity of one or a few antennas. In this paper, the characteristics of directivity enhancement using different metamaterial structures as antenna superstrates, such as electromagnetic bandgap (EBG) structures, frequency selective surface (FSS), and left-handed material (LHM), are unifiedly studied by applying the theory of Fabry-Perot (F-P) resonant cavity. Focusing on the analysis of reflection phase and magnitude of superstrates in presently proposed designs, the essential reason for high-directivity antenna with different superstrates can be revealed in terms of the F-P resonant theory. Furthermore, a new design of the optimum reflection coefficient of superstrates for the maximum antenna directivity is proposed and validated. The optimum location of the LHM superstrate which is based on a refractive lens model can be determined by the F-P resonant distance.


2014 ◽  
Vol 39 (7) ◽  
pp. 1729 ◽  
Author(s):  
Michel Lequime ◽  
Boris Gralak ◽  
Sébastien Guenneau ◽  
Myriam Zerrad ◽  
Claude Amra

Optik ◽  
2018 ◽  
Vol 172 ◽  
pp. 265-270
Author(s):  
Elaheh Tahmasebi ◽  
Elham Yousefi ◽  
Mohsen Hatami ◽  
Amin Torabi Jahromi

2013 ◽  
Vol 873 ◽  
pp. 813-818 ◽  
Author(s):  
Chu Wen Lan ◽  
Xiao Jian Fu ◽  
Xiao Ming Liu ◽  
Bo Li ◽  
Ji Zhou

An all-dielectric fishnet metamaterial (DFM) composed of multilayer dielectric structure with periodically patterned holes is proposed to generate left-handed behavior in optical frequency region. Different from the metallic fishnet negative index metamaterial realized by coupling the neighbouring functional layers along the propagation direction, this DFM owes its simultaneous negative permeability and permittivity to the hybrid coupled resonances in the same layer. Based on this configration, a wide-band and polarization-independent negative refraction with maximum figure of merit as large as 13.85 is obtained by a silicon-based DFM at 450 nm wavelength. Simple and easy to fabricate, this concept is believed to provide an alternative route to realize high-performance negative index metamateirals at optical frequencies.


Sign in / Sign up

Export Citation Format

Share Document