scholarly journals Postprandial alterations in whole-blood DNA methylation are mediated by changes in white blood cell composition

2016 ◽  
Vol 104 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Mathias Rask-Andersen ◽  
Nathalie Bringeland ◽  
Emil K Nilsson ◽  
Marcus Bandstein ◽  
Marcela Olaya Búcaro ◽  
...  
2017 ◽  
Author(s):  
John Dou ◽  
Rebecca J. Schmidt ◽  
Kelly S. Benke ◽  
Craig Newschaffer ◽  
Irva Hertz-Picciotto ◽  
...  

AbstractBackgroundCord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells by generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability.ObjectivesTo evaluate differences in cell composition and DNA methylation between buffy coat and whole cord blood samples.MethodsCord blood DNA methylation was measured with the Infinium EPIC BeadChip (Illumina) in 8 individuals, each contributing buffy coat and whole blood samples. We analyzed principal components (PC) of methylation, performed hierarchical clustering, and computed correlations of mean-centered methylation between pairs. We conducted moderated t-tests on single sites and estimated cell composition.ResultsDNA methylation PCs were associated with individual (PPC1=1.4x10-9; PPC2=2.9x10-5; PPC3=3.8x10-5; PPC4=4.2x10-6; PPC5=9.9x10-13), and not with sample type (PPC1-5>0.7). Samples hierarchically clustered by individual. Pearson correlations of mean-centered methylation between paired individual samples ranged from r=0.66 to r=0.87. No individual site significantly differed between buffy coat and whole cord blood when adjusting for multiple comparisons (5 sites had unadjusted P<10-5). Estimated cell type proportions did not differ by sample type (P=0.86), and estimated cell counts were highly correlated between paired samples (r=0.99).ConclusionsDifferences in methylation and cell composition between buffy coat and whole cord blood are much lower than inter-individual variation, demonstrating that both sample preparation types can be analytically combined and compared.


2011 ◽  
Vol 2011 ◽  
pp. 1-3 ◽  
Author(s):  
Stephen I. Rifkin

Pseudohyperkalemia occurs occasionally in patients with extreme leukocytosis. Increased white blood cell fragility coupled with mechanical stress is felt to be causal. Serum and plasma potassium levels have been both associated with pseudohyperkalemia. Whole blood potassium determination will usually verify the correct diagnosis. It is important to diagnose this condition early so that patients are not inappropriately treated. Two patients with chronic lymphocytic leukemia and extreme leukocytosis are presented, one with pseudohyperkalemia and one with probable pseudohyperkalemia, and diagnostic considerations are discussed


2018 ◽  
Author(s):  
Meaghan J Jones ◽  
Louie Dinh ◽  
Hamid Reza Razzaghian ◽  
Olivia de Goede ◽  
Julia L MacIsaac ◽  
...  

AbstractBackgroundDNA methylation profiling of peripheral blood leukocytes has many research applications, and characterizing the changes in DNA methylation of specific white blood cell types between newborn and adult could add insight into the maturation of the immune system. As a consequence of developmental changes, DNA methylation profiles derived from adult white blood cells are poor references for prediction of cord blood cell types from DNA methylation data. We thus examined cell-type specific differences in DNA methylation in leukocyte subsets between cord and adult blood, and assessed the impact of these differences on prediction of cell types in cord blood.ResultsThough all cell types showed differences between cord and adult blood, some specific patterns stood out that reflected how the immune system changes after birth. In cord blood, lymphoid cells showed less variability than in adult, potentially demonstrating their naïve status. In fact, cord CD4 and CD8 T cells were so similar that genetic effects on DNA methylation were greater than cell type effects in our analysis, and CD8 T cell frequencies remained difficult to predict, even after optimizing the library used for cord blood composition estimation. Myeloid cells showed fewer changes between cord and adult and also less variability, with monocytes showing the fewest sites of DNA methylation change between cord and adult. Finally, including nucleated red blood cells in the reference library was necessary for accurate cell type predictions in cord blood.ConclusionChanges in DNA methylation with age were highly cell type specific, and those differences paralleled what is known about the maturation of the postnatal immune system.


2018 ◽  
Author(s):  
Jacob Bergstedt ◽  
Alejandra Urrutia ◽  
Darragh Duffy ◽  
Matthew L. Albert ◽  
Lluís Quintana-Murci ◽  
...  

DNA methylation is a stable epigenetic alteration that plays a key role in cellular differentiation and gene regulation, and that has been proposed to mediate environmental effects on disease risk. Epigenome-wide association studies have identified and replicated associations between methylation sites and several disease conditions, which could serve as biomarkers in predictive medicine and forensics. Nevertheless, heterogeneity in cellular proportions between the compared groups could complicate interpretation. Reference-based cell-type deconvolution methods have proven useful in correcting epigenomic studies for cellular heterogeneity, but they rely on reference libraries of sorted cells and only predict a limited number of cell populations. Here we leverage >850,000 methylation sites included in the MethylationEPIC array and use elastic net regularized and stability selected regression models to predict the circulating levels of 70 blood cell subsets, measured by standardized flow cytometry in 962 healthy donors of western European descent. We show that our predictions, based on a hundred of methylation sites or lower, are less error-prone than other existing methods, and extend the number of cell types that can be accurately predicted. Application of the same methods to age, smoking consumption and several serological responses to pathogen antigens also provide accurate estimations. Together, our study substantially improves predictions of blood cell composition based on methylation profiles, which will be critical in the emerging field of medical epigenomics.


Author(s):  
Mitali Ray ◽  
Lacey W. Heinsberg ◽  
Yvette P. Conley ◽  
James M. Roberts ◽  
Arun Jeyabalan ◽  
...  

Objective: We utilized epigenome-wide DNA methylation data to estimate/compare white blood cell (WBC) proportions in plasma across preeclamptic (case) and uncomplicated, normotensive (control) pregnancy. Methods: We previously collected methylation data using Infinium MethylationEPIC Beadchips during the three trimesters in 28 cases and 28 controls (21 Black, 7 White participants/group). We employed the Houseman regression calibration method to estimate and compare neutrophil, monocyte, B cell, NK cell, CD4+ T and CD8+ T cell proportions across pregnancy and between cases and controls. Results: We observed changes in WBC proportions across pregnancy within cases and controls that varied by cell type and race. Neutrophils represented the largest WBC mean proportion in all three trimesters for cases (Mean+/-SD: 67.2+/-9.6% to 74.4+/-12%) and controls (64.2+/-11% to 74.0+/-7.9%). Mean B cell proportions were significantly lower in cases than controls in Trimester 1 (5.25+/-0.02% versus 6.30+/-0.02%, p=0.02). The remaining mean cell proportions did not significantly differ in the overall sample. Stratified analyses revealed race-specific differences. In White participants (n=14): (1) neutrophil proportions were significantly higher in cases in Trimester 1 (p=0.04), but significantly lower in Trimester 2 (p=0.02), (2) B cell proportions were significantly lower in cases in Trimester 1 (p=0.001). No significant differences were detected among Black participants (n=42). Conclusions: Although chronic inflammation characterizes preeclampsia, few studies have investigated WBCs across pregnancy. We report differences between cases and controls across pregnancy. Our findings in a small sample demonstrate the need for additional studies investigating the relationship between race and WBCs in pregnancy, which could provide insight into preeclampsia pathophysiology.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3459-3459
Author(s):  
Meredith E Fay ◽  
David R Myers ◽  
Amit Kumar ◽  
Rebecca Byler ◽  
Todd A Sulchek ◽  
...  

Abstract After treatment with glucocorticoids (e.g. dexamethasone) or catecholamines (e.g. epinephrine), the white blood cell (WBC) count substantially increases. This is primarily due to WBCs shifting from the marginated to circulating pools (Nakagawa et al., Circulation, 2008) and is traditionally attributed to down-regulation of adhesion molecule expression (Weber et al., J Leukoc Biol, 2004).Recent research has described how mechanical properties determine the radial position of blood cells within the intravascular space (Reasor et. al, Ann Biomed Eng., 2013). In addition, because WBC demargination occurs rapidly (e.g.,<15 min after IV epinephrine infusion (Dimitrov et al., J Immunol. 2010)) on a timescale that may be shorter than that expected for alterations in gene expression, we hypothesized that alterations in WBC mechanical properties upon exposure to glucocorticoids or catecholamines mediate demargination. To that end, we developed an in vitro microfluidic system as a simplified microvasculature model (Fig 1A), which our laboratory has expertise in (Tsai et al., J Clin Invest., 2008 and Rosenbluth et al., Biophys J. , 2006). In the absence of confounding factors such as WBC release from bone marrow or endothelial interactions, this type of assay is ideally suited to determine the role of glucocorticoid and catecholamine treatment on the demargination of WBCs. By flowing whole blood into similar non-functionalized microfluidic devices, other groups have demonstrated that non-activated WBCs marginate to the microfluidic channel wall, which is likely due to their mechanical properties (Jain et al., PLoS One, 2009). Human whole blood was incubated at 37° C with acridine orange (WBC stain) and either dexamethasone or epinephrine at physiologically relevant concentrations. The blood was then flowed through our microfluidics at physiologic shear rates while confocal videomicroscopy was used to image the center plane of the channel. We developed custom analysis software that extracts the position of individual WBCs from a series of confocal images and plots histograms of their locations, tracking over 10,000 WBCs per experiment (Fig 1B). Overall, we found that both dexamethasone and epinephrine (to a slightly lesser extent) cause WBCs to demarginate from the walls of the vessel compared to control conditions (Fig 1C). This glucocorticoid and catecholamine-induced movement of WBCs toward the microchannel center mimics in vivo demargination and our reductionist microfluidic approach strongly suggests that alterations in WBC mechanics play a key role in this process. Indeed, using computational modeling, we confirmed that a reduction in the mechanical stiffness of WBCs is sufficient by itself to explain the observed demargination (Fig 2A) (Kumar et al., Phys Rev Lett., 2012). Using a range of WBC stiffnesses, our simulations revealed that decreases in WBC stiffness correlated with the degree of demargination. To corroborate our microfluidic data, we also directly measured WBC stiffness using atomic force microscopy. WBCs treated with dexamethasone were significantly softer (p< 0.0002) than control WBCs (Fig 2B), supporting our hypothesis that the demargination phenomenon is related to the biophysical changes in WBCs. Experiments measuring the stiffness of epinephrine-treated cells as well as experiments evaluating how these drugs affect the actin cytoskeleton are currently underway. Overall, our data suggest that WBC mechanics play a major role in glucocorticoid- and catecholamine-induced demargination and that the underlying mechanisms may, at least in part, be biophysical in nature. This novel finding may have important implications in other hematologic processes such as WBC margination and recruitment during inflammatory responses or hematopoietic stem cell mobilization and homing. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 24 (1) ◽  
pp. 221-229 ◽  
Author(s):  
James M. Flanagan ◽  
Mark N. Brook ◽  
Nick Orr ◽  
Katarzyna Tomczyk ◽  
Penny Coulson ◽  
...  

Epigenetics ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. 868-874 ◽  
Author(s):  
Lissette Delgado-Cruzata ◽  
Hui-Chen Wu ◽  
Mary Perrin ◽  
Yuyan Liao ◽  
Maya A. Kappil ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Cilla Söderhäll ◽  
Lovisa E. Reinius ◽  
Pertteli Salmenperä ◽  
Massimiliano Gentile ◽  
Nathalie Acevedo ◽  
...  

Abstract Background Methylation of DNA at CpG sites is an epigenetic modification and a potential modifier of disease risk, possibly mediating environmental effects. Currently, DNA methylation is commonly assessed using specific microarrays that sample methylation at a few % of all methylated sites. Methods To understand if significant information on methylation can be added by a more comprehensive analysis of methylation, we set up a quantitative method, bisulfite oligonucleotide-selective sequencing (Bs-OS-seq), and compared the data with microarray-derived methylation data. We assessed methylation at two asthma-associated genes, IL13 and ORMDL3, in blood samples collected from children with and without asthma and fractionated white blood cell types from healthy adult controls. Results Our results show that Bs-OS-seq can uncover vast amounts of methylation variation not detected by commonly used array methods. We found that high-density methylation information from even one gene can delineate the main white blood cell lineages. Conclusions We conclude that high-resolution methylation studies can yield clinically important information at selected specific loci missed by array-based methods, with potential implications for future studies of methylation-disease associations.


Sign in / Sign up

Export Citation Format

Share Document