scholarly journals Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved

2017 ◽  
2019 ◽  
Vol 58 (S2) ◽  
pp. 13-19 ◽  
Author(s):  
Christine Morand ◽  
Francisco A. Tomás-Barberán

Abstract Purpose Research has identified plant-based diets as the most protective for our health; it is now essential to focus on good food associations and the beneficial constituents in plant foods. From a growing body of evidence, some categories of food phytochemicals are increasingly considered to play a crucial role in the cardiometabolic health effects associated with plant food consumption. However, the heterogeneity in responsiveness to plant food bioactive intake that is frequently observed in clinical trials can hinder the identification of the effects of these compounds in specific subpopulations and likely lead to underestimating their actual contribution to the health effects of their food sources. Results The magnitude and the main factors responsible for this between-subject variation in response to the consumption of the major families of food phytochemicals have been poorly documented so far. Thus, research efforts in this area must be developed. More importantly, capturing the interindividual variability in response to plant food bioactive intake, together with identifying the main determinants involved, is a crucial step that will enable the development and production of plant food products, thereby satisfying the nutritional needs and conferring benefits to different categories of populations. Conclusion The development of a science-based personalised nutrition approach focusing on plant foods rich in specific bioactive compounds could contribute to alleviating the dramatic burden of metabolic and cardiovascular diseases.


2014 ◽  
Vol 64 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Sahar Al-Okbi ◽  
Doha Mohamed ◽  
Thanaa Hamed ◽  
Reham Esmail ◽  
Souria Donya

2021 ◽  
pp. 501-506
Author(s):  
Massimo Lucarini ◽  
Alessandra Durazzo ◽  
Antonio Raffo ◽  
Amirhossein Nazhand ◽  
Eliana B. Souto ◽  
...  

2019 ◽  
Vol 58 (S2) ◽  
pp. 21-36 ◽  
Author(s):  
Rikard Landberg ◽  
Claudine Manach ◽  
Frederiek-Maarten Kerckhof ◽  
Anne-Marie Minihane ◽  
Rasha Noureldin M. Saleh ◽  
...  

Abstract Purpose The health-promoting potential of food-derived plant bioactive compounds is evident but not always consistent across studies. Large inter-individual variability may originate from differences in digestion, absorption, distribution, metabolism and excretion (ADME). ADME can be modulated by age, sex, dietary habits, microbiome composition, genetic variation, drug exposure and many other factors. Within the recent COST Action POSITIVe, large-scale literature surveys were undertaken to identify the reasons and extent of inter-individual variability in ADME of selected plant bioactive compounds of importance to cardiometabolic health. The aim of the present review is to summarize the findings and suggest a framework for future studies designed to investigate the etiology of inter-individual variability in plant bioactive ADME and bioefficacy. Results Few studies have reported individual data on the ADME of bioactive compounds and on determinants such as age, diet, lifestyle, health status and medication, thereby limiting a mechanistic understanding of the main drivers of variation in ADME processes observed across individuals. Metabolomics represent crucial techniques to decipher inter-individual variability and to stratify individuals according to metabotypes reflecting the intrinsic capacity to absorb and metabolize bioactive compounds. Conclusion A methodological framework was developed to decipher how the contribution from genetic variants or microbiome variants to ADME of bioactive compounds can be predicted. Future study design should include (1) a larger number of study participants, (2) individual and full profiling of all possible determinants of internal exposure, (3) the presentation of individual ADME data and (4) incorporation of omics platforms, such as genomics, microbiomics and metabolomics in ADME and efficacy studies.


Metabolites ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 46 ◽  
Author(s):  
Ville Mikael Koistinen ◽  
Andreia Bento da Silva ◽  
László Abrankó ◽  
Dorrain Low ◽  
Rocio Garcia Villalba ◽  
...  

Bioactive compounds present in plant-based foods, and their metabolites derived from gut microbiota and endogenous metabolism, represent thousands of chemical structures of potential interest for human nutrition and health. State-of-the-art analytical methodologies, including untargeted metabolomics based on high-resolution mass spectrometry, are required for the profiling of these compounds in complex matrices, including plant food materials and biofluids. The aim of this project was to compare the analytical coverage of untargeted metabolomics methods independently developed and employed in various European platforms. In total, 56 chemical standards representing the most common classes of bioactive compounds spread over a wide chemical space were selected and analyzed by the participating platforms (n = 13) using their preferred untargeted method. The results were used to define analytical criteria for a successful analysis of plant food bioactives. Furthermore, they will serve as a basis for an optimized consensus method.


2018 ◽  
pp. 55-73
Author(s):  
L. A. Ortega-Ramirez ◽  
G. A. Gonzalez-Aguilar ◽  
J. F. Ayala-Zavala ◽  
M. R. Cruz-Valenzuela

2020 ◽  
Vol 79 (2) ◽  
pp. 225-235 ◽  
Author(s):  
Christine Morand ◽  
Baukje De Roos ◽  
Maria Teresa Garcia-Conesa ◽  
Eileen R. Gibney ◽  
Rikard Landberg ◽  
...  

Food phytochemicals are increasingly considered to play a key role in the cardiometabolic health effects of plant foods. However, the heterogeneity in responsiveness to their intake frequently observed in clinical trials can hinder the beneficial effects of these compounds in specific subpopulations. A range of factors, including genetic background, gut microbiota, age, sex and health status, could be involved in these interindividual variations; however, the current knowledge is limited and fragmented. The European network, European Cooperation in Science and Technology (COST)-POSITIVe, has analysed, in a systematic way, existing knowledge with the aim to better understand the factors responsible for the interindividual variation in response to the consumption of the major families of plant food bioactives, regarding their bioavailability and bioefficacy. If differences in bioavailability, likely reflecting differences in human subjects’ genetics or in gut microbiota composition and functionality, are believed to underpin much of the interindividual variability, the key molecular determinants or microbial species remain to be identified. The systematic analysis of published studies conducted to assess the interindividual variation in biomarkers of cardiometabolic risk suggested some factors (such as adiposity and health status) as involved in between-subject variation. However, the contribution of these factors is not demonstrated consistently across the different compounds and biological outcomes and would deserve further investigations. The findings of the network clearly highlight that the human subjects’ intervention studies published so far are not adequate to investigate the relevant determinants of the absorption/metabolism and biological responsiveness. They also emphasise the need for a new generation of intervention studies designed to capture this interindividual variation.


2016 ◽  
Vol 194 ◽  
pp. 619-625 ◽  
Author(s):  
Liisa Uusitalo ◽  
Maija Salmenhaara ◽  
Merja Isoniemi ◽  
Alicia Garcia-Alvarez ◽  
Lluís Serra-Majem ◽  
...  

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Pedro Mena ◽  
Michele Tassotti ◽  
Alice Rosi ◽  
Daniela Martini ◽  
Laura Righetti ◽  
...  

AbstractCoffee is an important source of bioactive compounds, including caffeine, trigonelline, and phenolic compounds. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites in real-life settings is unknown. This study evaluated the bioavailability and effects on recognised cardiometabolic markers of coffee bioactives, considering different levels of consumption. An innovative experimental design, including both a chronic and an acute sub-study, and a comprehensive analytical approach were used.A 3-arm, randomised, crossover trial was conducted in 21 healthy volunteers (age, 23 ± 2 y; BMI, 22.3 ± 2.5 kg/m2) (Mena et al., Trials 2017, 18, 527). Volunteers were assigned to consume 3 treatments for 4 weeks, including 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based confectionary products containing-coffee twice per day. The last day of each treatment, blood and urine samples were collected at specific time points for 24 hours. Dietary intake, body weight, BMI, waist circumference, blood pressure, fasting glucose, insulin, LDL- and HDL-cholesterol, triglycerides, nitric oxide, inflammatory markers (IL-8, TNFα, VEGF), trimethylamine-N-oxide (TMAO), DNA damage, DNA catabolites, and eicosanoids were assessed. The pool of coffee-derived circulating metabolites was also assessed in acute conditions. Untargeted metabolomics was performed.Energy intake did not change among treatments after 4 weeks, while significant differences were observed in the intake of saturated fatty acids and carbohydrates. The effect of different coffee dosages on the set of cardiometabolic markers assessed was negligible. Plasma and urinary pharmacokinetic profiles were evaluated for 6 caffeine metabolites, 3 trigonelline derivatives, and up to 40 phenolic metabolites. Pharmacokinetics highlighted the different “waves” of circulating metabolites occurring upon repeated coffee consumption. Differences in several pharmacokinetic parameters were observed among treatments, which may support the long-term cardiometabolic benefits of certain patterns of coffee consumption. Multivariate analyses clearly differentiated treatments on the basis of the urinary metabolome.This work provided a comprehensive picture of the impact of different coffee dosages on the pool of coffee-derived circulating metabolites, the urinary metabolome, and a wide number of cardiometabolic markers. Multivariate analyses focused on inter-individual differences are ongoing to better understand the effect of coffee on cardiometabolic health.


Sign in / Sign up

Export Citation Format

Share Document