scholarly journals Response of common buckwheat and Tartary buckwheat from different elevations to selenium treatment

Fagopyrum ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 15-23
Author(s):  
Aleksandra Golob ◽  
Neja Luzar ◽  
Mateja Germ

Common buckwheat and Tartary buckwheat were grown in Slovenia outdoors at different elevations – 300 m, 600 m and 1180 m a.s.l. Both species were foliarly treated with selenium twice (in the vegetative phase and in the flowering phase). The effects of Se treatment and different growing locations on selected biochemical, physiological and anatomical traits were monitored. In Se treated common buckwheat, amount of chlorophylls was higher in plants from Ljubljana (the lowest elevation – 300 m a.s.l.) than in plants grown in Podbeže (600 m a.s.l.), whereas in control group, plants grown in Ljubljana contained more chlorophylls than plants from Javorje (the highest elevation – 1180 m a.s.l.). In both buckwheat species, Se alone did not affect amount of chlorophylls in any of location. In Se treated common buckwheat plants, the amount of UV absorbing compounds was the highest in plants, grown at the highest elevation. In common buckwheat, Se lowered the number of CaOx in plants, grown in Javorje. Conditions at different elevations, as well as treatments with Se, did not affect potential and effective photochemical efficiency of Photosystem II. Keywords: common buckwheat, Tartary buckwheat, elevation, selenium, morphological characteristics, biochemical characteristics

2018 ◽  
Vol 69 (5) ◽  
pp. 714 ◽  
Author(s):  
Gaozhong Pu ◽  
Denan Zhang ◽  
Danjuan Zeng ◽  
Guangping Xu ◽  
Yuqing Huang

A simulated wetland experiment was used to investigate the effect of thallium (Tl) accumulation on the growth of Arundo donax L., its photosynthetic characteristics and its antioxidant enzyme activities. Tl accumulated in the order of stems<leaves<roots and increased gradually with increasing Tl concentrations (from 0 to 2.5µgL–1). Moderate Tl applications (from 0.2 to 2.5µgL–1) increased the rate of both photosynthesises (Pn) and transpiration (Tr), as well as catalase and peroxidase activity. Tl significantly affected stomatal conductivity, but had no effect on the relative chlorophyll content (SPAD values) or the potential and effective photochemical efficiency of photosystem II. However, intercellular CO2 concentrations and superoxide dismutase decreased in response to increasing Tl concentrations. Although 50µgL–1 Tl significantly decreased the SPAD values, as well as the potential and effective photochemical efficiency of photosystem II, it had no effect on Pn or Tr. These results suggest that root restriction and oxidative stress are involved in the mechanism of Tl toxicity, but the photosynthetic system of A. donax was not harmed by certain concentrations of Tl, indicating the strong tolerance of this species to increased Tl pollution.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 434 ◽  
Author(s):  
Yun-Long Shi ◽  
Zhuo-Yu Cai ◽  
Da Li ◽  
Jian-Liang Lu ◽  
Jian-Hui Ye ◽  
...  

Freezing tolerant tea cultivars are urgently needed. The tea cultivars with highly freezing tolerance showed resistance to freezing stress induced photoinhibition. Freezing sensitivity index (H) of 47 tea clonal cultivars was investigated after severe freezing winter in 2016. To develop instrumental methods for freezing tolerance selection, the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm) and leaf color indicator a on the Hunter color scale were determined on control group (non-frozen) and frozen group (being frozen at −15 °C for 2 h and then stood at 20 °C for 5 h) of the cultivars. When the two indicators were expressed as the ratios (RFv/Fm and Ra) of frozen group to control group, linear regression of the freezing sensitivity index (H) upon the RFv/Fm and Ra produced significant relationship respectively, i.e., H = 60.31 − 50.09 RFv/Fm (p < 0.01) and H = 30.03 − 10.82 Ra (p < 0.01). Expression of gene psbA encoding D1 protein and gene psbD encoding D2 protein in PSII showed that the frezzing tolerant tea cultivars maintained a high expression level of psbA after freezing stress, which is considered to be beneficial to de novo synthesis of D1 protein and sustaining PSII activity. These findings can provide instrumental tools for assessing freezing tolerance of tea cultivars in tea breeding program.


2020 ◽  
Vol 61 (1) ◽  
pp. 75-87
Author(s):  
Lea Lukšič ◽  
Aleksandra Golob ◽  
Maria Mravik ◽  
Mateja Germ

Buckwheat became a pan-Eurasian crop, when it expanded via Himalaya to Europe. Common buckwheat is one of the oldest domesticated crops in Asia, while Tartary buckwheat is still thriving as a wild or weedy plant. Buckwheat belongs to dicotyledonous crops that can tolerate poor soils and extreme environment conditions. Buckwheat grows on high elevation, where the intensities of UV radiation are usually high. Buckwheat is a fast-growing plant rich in flavonoids, which absorb UV radiation and have an antioxidant potential. Flavnoids have positive effect also on human health. Besides common buckwheat flour, Tartary buckwheat flour is more and more used in preparing dishes, due to its much higher content of flavonoids rutin and quercetin compared to common buckwheat. Therefore, the studies on how the technological procedures of preparing Tartary buckwheat bread affect the content, availability and efficacy of flavonoids in buckwheat bread have been made. Buckwheat is commonly used in the dishes in Japan (soba noodles), China (buckwheat noodles), Korea (buckwheat noodles), Italy (buckwheat polenta), France (galettes), Slovenia (kasha, žganci). Common buckwheat and Tartary buckwheat are plants suitable for designing foods with good functional value and healthy features. Therefore, it has been determined that different technological procedures, such as hydrothermal treatment of grain, sourdough fermentation, dough preparation and baking influences the availability and changes in the content of flavonoids, rutin and quercetin and antioxidant activity in sour bread and food products, made with buckwheat flour. Key words: Common buckwheat, Tartary buckwheat, sourdough bread, rutin, quercetin, flavonoids, UV absorbing compounds   Izvleček Ajda je postala vseevrazijska kultura, ko se je preko območja Himalaje razširila v Evropo. Navadna ajda je ena najstarejših gojenih rastlin v Aziji, medtem ko tatarska ajda še vedno uspeva tudi kot divja ali plevelna rastlina. Ajda spada med gojene dvokaličnice, ki lahko prenašajo slaba tla in ekstremne razmere v okolju. Ajda raste na visoki nadmorski višini, kjer je intenziteta ultravijoličnega sevanja običajno visoka. Ajda je hitro rastoča rastlina, bogata z flavonoidi, ki absorbirajo UV sevanje in imajo antioksidativni potencial. Flavonoidi pozitivno vplivajo tudi na zdravje ljudi. Poleg moke iz navadne ajde se moka iz tatarske ajde vse pogosteje uporablja pri pripravi jedi, ker ima v primerjavi z navadno ajdo veliko večjo vsebnost flavonoidov kot sta rutin in kvercetin. Zato so bile narejene študije o tem, kako tehnološki postopki priprave kruha iz tatarske ajde vplivajo na vsebnost, razpoložljivost in učinkovitost flavonoidov v ajdovem kruhu. Ajdo je zelo pogosto uporabljajo v jedeh na Japonskem, na Kitajskem, Koreji, v Italiji, v Franciji, Sloveniji. Navadna ajda in tatarska ajda, sta rastlini primerni za pripravo živil z dobro funkcijsko vrednostjo in lastnostmi ugodnimi za zdravje. Ugotovljeno je bilo, da različni tehnološki postopki, kot so hidrotermična obdelava zrnja, mlečnokislinska fermentacija, priprava testa in peka, vplivajo na dostopnost in spremembe v vsebnosti flavonoidov, rutina in kvercetina in antioksidativno aktivnost kislih kruhov in prehranskih izdelkov pripravljenih iz ajdove moke . Ključne besede: navadna ajda, tatarska ajda, kruhi s kislim testom, rutin, kvercetin, flavonoidi, UV absorbirajoče snovi


2021 ◽  
pp. 34-43
Author(s):  
Evgeniia A. Grigoreva ◽  
Valentina S. Gordova ◽  
Valentina E. Sergeeva ◽  
Alina T. Smorodchenko

The article presents data on the long-term effect (nine months) of a silicon compound supplied with drinking water – nonahydrate sodium metasilicate (10 mg/l in terms of silicon), on CD68-positive macrophages in the liver and spleen of laboratory rats. Changes in the morphological characteristics of this cell population were found. There was a decrease in the average cell area (in the liver of the control group of rats, the average macrophage area was 179.23±5.94 microns2, and in the group receiving silicon with drinking water – 117.04±3.35 microns2; in the spleen-136.02±3.93 microns2 and 103.44±2.8 microns2, respectively). Macrophages in the liver preparations of the experimental group of rats had a fewer processes and a darker cytoplasmic membrane. The number of macrophages in the liver per unit area was comparable, for the control group of rats it was 18.78±1.24, and for the rats that received with water with the addition of silicon – 19.41±0.75 cells. CD68+ macrophages of the red splenic pulp in laboratory rats that received silicon also underwent the following morphological changes: they were located in a denser way and had fewer processes, while the number of macrophages per unit area was 73.7±2.3 for the control group, 91.6±5.0-for the experimental group, respectively. The distance between them did not change. There was a change in the intensity of CD68 expression on the surface of the cytoplasmic membrane and in the cytoplasm of liver and spleen macrophages. These changes can be interpreted as the adaptive ability of liver and spleen macrophages to silicon introduced with drinking water. Given the heterogeneity of the macrophage population in the liver and spleen, further studies using markers for different subpopulations of macrophages are needed to clarify their role in the response of tissues to silicon supplied with drinking water.


2007 ◽  
Vol 37 (4) ◽  
pp. 533-541 ◽  
Author(s):  
Denize Caranhas de Sousa Barreto ◽  
José Francisco de Carvalho Gonçalves ◽  
Ulysses Moreira dos Santos Júnior ◽  
Andreia Varmes Fernandes ◽  
Adriana Bariani ◽  
...  

The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.


2010 ◽  
Vol 38 (03) ◽  
pp. 613-624 ◽  
Author(s):  
Guo-Guang Lou ◽  
Hang-Ping Yao ◽  
Li-Ping Xie

The potential molecular mechanism of Brucea javanica oil in the induction of apoptosis of T24 bladder cancer cells was investigated in vitro. T24 cells were divided into two groups: one, treated with B. javanica oil and the other, untreated. The cells were maintained in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum (FCS) and 4 mM glutamine. The morphological characteristics of T24 cells were examined microscopically at the 2nd and 5th day of the culture. The drug toxicity spectrum ( IC 50) was estimated by the MTT assay, and viability of T24 cells was assessed on the basis of the percentage of T24 apoptotic cells, as determined by Annexin/PI staining and flow cytometric analysis. The expression of caspase-3, capase-9, NF-κB p65, and COX-2 was analyzed by Western blotting. Morphological characteristics of the cells on the 2nd day showed apoptosis of the treated T24 cells; it was more apparent in the cells on the 5th day. B. javanica oil decreased the cell viability at the testing concentrations spectrum (5–0.156 mg/ml), and this viability was significantly higher as compared to the control group. In this concentration spectrum, B. javanica oil also induced apoptosis of T24 cells, which was analyzed by annexin/PI staining and flow cytometric analysis. These results were also statistically significant as compared to those of the control group. The expressions of caspase-3 and caspase-9 were low in the control T24 cells, while the expressions of NF-κB and COX-2 were high in normal T24 cells. Treatment with B. javanica oil significantly induced the expressions of caspase-3 and caspase-9 proteins in T24 cells, whereas the expressions of NF-κB and COX-2 proteins were inhibited. B. javanica oil significantly reduced the viability of T24 cells and induced T24 cell apoptosis. The molecular mechanism underlying these effects may be the activation of caspase apoptotic pathway by upregulation of the expression of caspase-3 and caspase-9 proteins and inhibition of the expression of NF-κB and COX-2 proteins.


2019 ◽  
Vol 13 (4) ◽  
pp. 305-310
Author(s):  
Mina Biria ◽  
Sajedeh Namaei Ghasemi ◽  
Seyedeh Mahsa Sheikh-Al-Eslamian ◽  
Narges Panahandeh

Background. This in vitro study aimed to evaluate the microshear bond strength (μSBS), microhardness and morphological characteristics of primary enamel after treating with sodium fluoride (NaF) and acidulated phosphate fluoride (APF). Methods. Forty-eight primary canines were cut into mesial and distal sections and assigned to five groups randomly: group 1 (immersed in saliva as a control), group 2 (treated with NAF and immersed in saliva for 30 minutes), group 3 (treated with APF and immersed in saliva for 30 minutes), group 4 (treated with NAF and immersed in saliva for 10 days), and group 5 (treated with APF and immersed in saliva for 10 days). Composite resin (Filtek Z250) was bonded on the specimens (n=15) for measuring the μSBS. After storage in 37°C artificial saliva for 24 hours, µSBS and Vickers hardness tests (10 readings) were performed. The data were analyzed using one-way ANOVA and Kolmogorov-Smirnov, Levene’s and Tukey HSD tests (P<0.05). Morphological analysis of enamel and modes of failure were carried out under a scanning electron microscope (SEM) on two remaining specimens. Results. Significant differences in μSBS were only noted between groups 2 and 4 (P=0.024). Group 3 showed a significant decrease in hardness after storage in artificial saliva (P<0.001), with a significantly lower hardness than the other groups (P<0.001). The SEM observations showed irregular particles in groups 3 and 5; uniform, smooth and thin coats were seen in groups 2 and 4. Conclusion. Fluoride therapy with NaF and APF gels prior to restorative treatments had no adverse effects on the microshear bond strength.


2021 ◽  
Vol 27 (1) ◽  
pp. 68-73
Author(s):  
E.N. Shchurova ◽  
◽  
G.N. Filimonova ◽  
S.O. Ryabykh ◽  
◽  
...  

Introduction Morphological, biochemical and histopathological characteristics of paraspinal muscles have been well described in patients with idiopathic scoliosis. However, there is a paucity of literature on morphological picture of paraspinal muscles in patients with severe idiopathic scoliosis. Objective To explore how the magnitude of thoracic spine deformity affects morphological characteristics of paraspinal muscles in patients with severe idiopathic scoliosis. Material and methods A total 21 patients with idiopathic scoliosis were reviewed. The patients were assigned to two groups depending on magnitude of preoperative thoracic spine deformity. A major group consisted of patients with scoliosis of ≥ 60º (n = 11) and control group included patients with a curve < 60º (n=10). Biopsy samples were taken from muscle fragments (multifidus muscle) at the apex of the curve (major arc) at the Th6-Th10 level on the convex side while approaching to the posterior spinal structures during surgical correction of kyphoscoliosis using light microscope. The specimens were examined histologically with light microscope. Results Patients with severe idiopathic scoliosis (≥ 60º) showed evident muscle fiber atrophy and dystrophy of different extent. There were nucleus free areas and homogenized muscle fragments observed with connective tissue layers being swollen and frayed with multiple fibroblasts seen in nearly all the samples. Arterial walls were normally fibrotized. Structural changes ranged from minimal with a curve of 60º to degrading muscles with the fibers replaced by fat and connective tissues with a curve angle of 145º. Conclusion Morphological characteristics of paraspinal muscles have been shown to be severely affected by the magnitude of thoracic spine deformity in patients with severe idiopathic scoliosis. The findings should be considered in surgical correction of kyphoscoliosis with special focus on postoperative vascular and neurotropic therapy to allow wound healing and lower complication rate.


2021 ◽  
Vol 13 (19) ◽  
pp. 10737
Author(s):  
Seok-Kyu Jung ◽  
Hyun-Sug Choi

This study was carried out to assess the morphological characteristics, fruit quality, and antioxidant levels in sucrose ester-coated ‘Harmony’ plumcots (Prunus salicina Lindl. × P. armeniaca L.). Fruit samples in the control group were left untreated, with two further groups undergoing coating either after 0 days of cold storage (0 d CS) or after 7 days of cold storage (7 d CS) to evaluate changes in post-harvest quality at three-day intervals throughout 12 days of room temperature storage (12 DAS). Coating treatment significantly reduced fruit respiration during storage time in the 0 d CS samples, with this being attributed to the clogging of pores in peel stomata and lenticel, as observed on the fruits under scanning electron microscopy; however, the same effect was not observed in the 7 d CS samples from fruits with a high initial CO2 concentration. The coating delayed fruit softening and discoloration during storage in the 0 d CS samples, extending the shelf-life of the fruits for approximately 9 days. However, the coating treatment was found to reduce total flavonoid and anthocyanin content at 6 DAS and 12 DAS in both groups.


Sign in / Sign up

Export Citation Format

Share Document