scholarly journals Nutritional quality and phytochemical contents of cold pressed oil obtained from chia, milk thistle, nigella, and white and black poppy seeds

2020 ◽  
Vol 71 (3) ◽  
pp. 368
Author(s):  
E. Rokosik ◽  
K. Dwiecki ◽  
A. Siger

Cold pressed oils obtained from chia (Salvia hispanica L.), milk thistle (Silybum marianum L.), nigella (Nigella sativa L.), and white and black varieties of poppy (Papaver somniferum L.) seeds were character­ized. The nutritional quality was determined based on the analysis of fatty acids, tocochromanol and phytos­terol contents, as well as antioxidant activity and general physico-chemical properties. Among the oils analyzed the fatty acid composition most beneficial for health was found in chia seed oil, with 65.62% of α-linolenic acid and the n-6:n-3 fatty acid ratio of 1:3.5. Other oils studied were rich sources of linoleic acid (18.35-74.70%). Chia seed oil was also distinguished by high contents of phytosterols, mainly β-sitosterol (2160.17 mg/kg oil). The highest content of tocochromanols was found in milk thistle oil with dominant α-tocopherol (530.2 mg/kg oil). In contrast, the highest antioxidant activity was recorded for nigella oil (10.23 μM Trolox/g), which indi­cated that, in addition to tocopherols, other antioxidants influenced its antioxidant potential.

Food Research ◽  
2020 ◽  
Vol 4 (S4) ◽  
pp. 27-37
Author(s):  
I. Ishak ◽  
M.A. Ghani ◽  
J.Z. Yuen

The oil yield, total phenolic content (TPC), total carotenoid content (TCC) and antioxidant activity of Australian chia seed (Salvia hispanica L.) oil under solvents polarity and extraction times were studied. The chia seed oils were obtained by using organic solvents in the Soxhlet method with different extraction times including acetone 4 hrs (A4), acetone 8 hrs (A8) and hexane 8 hrs (H8) as a control. The oil yield for the control sample (36.1%) showed significant (p ≤ 0.05) higher than A4 (33.53%) and A8 (33.73%). TPC for chia seed oil (A4) was significantly higher (p ≤ 0.05) than A8 and H8. Meanwhile, chia seed oil (A8) contained the highest TCC over A4 and H8. The antioxidant activity of chia seed oil was determined by DPPH (2-diphenyl-1-picrylhydrazyl) scavenging activity, FRAP (Ferric reducing antioxidant power assay), BCBA (Beta-carotene bleaching assay) and TBA (Lipid Peroxidation Inhibition Assay), respectively. Chia seed oil obtained by acetone extraction for 4 hrs revealed higher antioxidant capacities (DPPH, BCBA and TBA) compared to chia seed oils from A8 and H8. However, chia seed oil (H8) showed the lowest total (phenolic and carotenoid contents) and antioxidant capacities. The correlation between the antioxidant content and the antioxidant activities were conducted to determine their relationship. TPC and TCC were strongly correlated with BCBA (r = 0.999) and TBA (r = 0.997). The results found Australian chia seed oil extracted by acetone for 4 hrs (A4) had higher contents of phenolic and antioxidant activity than control (H8) due to high polarity of acetone to the antioxidant compounds. In conclusion, acetone can be applied as an alternative extraction solvent to increase the total phenolic and carotenoid contents as well as antioxidant activity of Australian chia seed oil.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
David Christopher Nieman ◽  
Nicholas D Gillitt ◽  
Amy M. Knab ◽  
Lynn Cialdella‐Kam ◽  
Fuxia Jin

Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2103-2113
Author(s):  
I. Ishak ◽  
M.A. Ghani ◽  
N.N.S. Nasri

This study consists of two parts. The first part is to identify the fatty acid composition of chia seed oils obtained by Soxhlet method using acetone and hexane as extraction solvents with different extraction times including acetone 4 hrs (A4), acetone 8 hrs (A8) and hexane 8 hrs (H8) as a control. Next, the oxidative stability and antioxidant activity of chia seed oils stored at different temperatures (25°C and 40°C) for 18 days were evaluated. From the study, chia seed oil (A8) had the highest content of α-linolenic acid (67.79%) with significant difference (p < 0.05) followed by other oil samples that were extracted using acetone and hexane for 4 hrs (67.54%) and 8 hrs (66.38%), respectively. The oxidative stability of chia seed oil was determined by peroxide value, p-anisidine value and TOTOX value. The results revealed that chia seed oils stored at room temperature (25°C) had higher oxidative stability compared to oil samples stored at 40°C. Elevated temperature strongly affected lipid oxidation. The control sample had higher oxidative stability than acetone-extracted chia seed oils. Meanwhile, antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity test was also carried out. Antioxidant activity of chia seed oil extracted by acetone had higher radical scavenging activity inhibition (p < 0.05) than the control sample at both temperatures (25°C and 40° C).The results confirmed that chia seed oil obtained by acetone had higher polyunsaturated fatty acids and lower oxidative stability than hexane. In conclusion, chia seed oil extracted by hexane showed better oxidative stability at different storage temperatures.


2019 ◽  
Vol 70 (4) ◽  
pp. 328 ◽  
Author(s):  
S. Hazrati ◽  
S. Nicola ◽  
S. Khurizadeh ◽  
A. Alirezalu ◽  
H. Mohammadi

Chrozophora tinctoria L., usually known as dyer’s Croton, Turnsole or Giradol, has been used in various medicinal and food products for many years. However, no comprehensive research has been undertaken to assess its potential as a new seed oil crop. Therefore, the current study examined the fatty acid composition, physico-chemical properties and antioxidant activity of C. tinctoria seeds, grown in the southwest of Iran. The seed oil content was found to be 26.40%. The extracted oil was analyzed for fatty acid composition using gas chromatography (GC). The results showed that unsaturated fatty acids accounted for almost 91% of the total fatty acids. Linoleic acid was the dominant fatty acid (76.68%), followed by oleic acid (13.99%) and palmitic acid (5.32%). δ-tocopherol was the major tocopherol in the oil, representing 70 mg/100 g oil. The total phenolic content (151.70 mg GAE per 100 g oil) and total flavonoid content (1.17 mg QE oil) were also determined in the extracted oil. The antioxidant activity was measured by a DPPH assay and expressed as 45% of the seed oil. Due to its high oil yield and high unsaturated fatty acid content, C. tinctoria could be regarded as a new source of edible oil.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Hyojik Jung ◽  
Inhwan Kim ◽  
Sunghyeon Jung ◽  
Jihyun Lee

AbstractChia seed and flax seed oils are rich in polyunsaturated fatty acids, but are susceptible to oxidative deterioration. The aim of this study was to determine the oxidative stability of chia seed and flax seed oils and enhance the stability using rosemary or garlic extracts. During accelerated storage at 65 °C for 14 days, the antioxidant abilities of rosemary or garlic extracts were evaluated and compared with those of butylated hydroxy toluene, ascorbyl palmitate, and α-tocopherol using peroxide value, conjugated dienoic acids, free fatty acid, thiobarbituric acid value analysis. The profile of volatiles, fatty acid composition, and the tocopherol contents in the treated and/or untreated oils were also determined. Active ingredients of rosemary and garlic extracts were also determined. Rosemary extract was found to provide higher oxidative stability than garlic extract after 14 days in most assays (e.g., the CDA values of 4.8% for rosemary extract and 5.2% for garlic extract in chia seed oil). The contents of γ-tocopherol, linoleic acid, and α-linolenic acid were well retained in the functional oils treated with the two extracts. After accelerated storage, the content of the major odor-active volatiles varied based on the type of oil. Our findings show the potential of natural aromatic plant extracts with respect to improving the oxidative stability of functional oils. 


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1283
Author(s):  
Ivan Dominguez-Candela ◽  
Jose Miguel Ferri ◽  
Salvador Cayetano Cardona ◽  
Jaime Lora ◽  
Vicent Fombuena

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0–10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.


Author(s):  
Syamsul RAHMAN ◽  
Salengke Salengke ◽  
Abu Bakar TAWALI ◽  
Meta MAHENDRADATTA

Palado (Aglaia sp) is a plant that grows wild in the forest around Mamuju regency of West Sulawesi, Indonesia. This plant is locally known as palado. Palado seeds (Aglaia sp) can be used as a source of vegetable oil because it contains approximately 14.75 % oil, and it has the potential to be used as food ingredients or as raw material for oil production. The purpose of this study was to determine the chemical properties and the composition of fatty acids contained in palado seed oil (Aglaia sp). The employed method involved the use of palado fruit that had been processed to be palado seed and undergoing flouring process. Palado flour was produced by the extraction process by using chloroform solvent with the soxhlet method. The characteristics of the chemical properties in the oil produced were analyzed by using a standard method, including iodine, saponification, and acid values. The analysis of fatty acid composition was conducted by using gas chromatography. The results showed that palado oil extracted with hexane had an iodine value of 15.38 mg/g, saponification value of 190.01 mg KOH/g, and acids value of 1.961 mg KOH/g. The fatty acid composition of the palado seed oil consisted of saturated fatty acids (41.601 %), which included palmitic acid (41.062 %), myristic acid (0.539 %), and unsaturated fatty acids (45.949 %), which included mono-unsaturated fatty acids (MUFA) such as (22.929 %), oleic acid and poly-unsaturated fatty acids (PUFA), which was linoleic acid (23.020 %).


2021 ◽  
Vol 72 (3) ◽  
pp. e415 ◽  
Author(s):  
M. De Wit ◽  
V.K. Motsamai ◽  
A. Hugo

Cold-pressed seed oil from twelve commercially produced cactus pear cultivars was assessed for oil yield, fatty acid composition, physicochemical properties, quality and stability. Large differences in oil content, fatty acid composition and physicochemical properties (IV, PV, RI, tocopherols, ORAC, % FFA, OSI and induction time) were observed. Oil content ranged between 2.51% and 5.96% (Meyers and American Giant). The important fatty acids detected were C16:0, C18:0, C18:1c9 and C18:2c9,12, with C18:2c9,12, the dominating fatty acid, ranging from 58.56-65.73%, followed by C18:1c9, ranging between 13.18-16.07%, C16:0, which ranged between 10.97 - 15.07% and C18:0, which ranged between 2.62-3.18%. Other fatty acids such as C14:0, C16:1c9, C17:0, C17:1c10, C20:0, C18:3c9,12,15 and C20:3c8,11,14 were detected in small amounts. The quality parameters of the oils were strongly influenced by oil content, fatty acid composition and physicochemical properties. Oil content, PV, % FFA, RI, IV, tocopherols, ORAC and ρ-anisidine value were negatively correlated with OSI. C18:0; C18:1c9; C18:2c9,12; MUFA; PUFA; n-6 and PUFA/SFA were also negatively correlated with OSI. Among all the cultivars, American Giant was identified as the paramount cultivar with good quality traits (oil content and oxidative stability).


Sign in / Sign up

Export Citation Format

Share Document