scholarly journals Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

2017 ◽  
Vol 68 (1) ◽  
pp. 179
Author(s):  
J. M. Ochando-Pulido ◽  
A. Martínez-Férez

In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42- > Cl- > NO3- and Ca2+ > Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm).

2013 ◽  
Vol 263 ◽  
pp. 158-167 ◽  
Author(s):  
J.M. Ochando-Pulido ◽  
G. Hodaifa ◽  
M.D. Victor-Ortega ◽  
S. Rodriguez-Vives ◽  
A. Martinez-Ferez

2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


2015 ◽  
Vol 73 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Ahmed H. Hilles ◽  
Salem S. Abu Amr ◽  
Rim A. Hussein ◽  
Anwar I. Arafa ◽  
Olfat D. El-Sebaie

The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O82−, 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O82−/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.


2013 ◽  
Vol 34 (4) ◽  
pp. 435-448 ◽  
Author(s):  
Bolesław Tabiś ◽  
Wojciech S. Stryjewski

Abstract A mathematical model for a two-phase fluidised bed bioreactor with liquid recirculation and an external aerator was proposed. A stationary nonlinear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.


2020 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Fami Amalia Putri ◽  
Sarto Sarto ◽  
Ahmad Tawfiequrrahman Yuliansyah

Limbah Rumah Sakit memiliki senyawa polutan yang tinggi, beracun, dan bahkan ada yang bersifat radioaktif. Limbah yang paling banyak terdapat di Rumah Sakit yaitu limbah dalam bentuk cair yang mengandung limbah obat – obatan seperti jenis antibiotik, beberapa mikroorganisme patogen, dan kandungan logam berat yang dapat mencemari lingkungan hidup, mengganggu kesehatan manusia dan makhluk hidup lain. Limbah Rumah Sakit Kota Yogyakarta mempunyai kadar COD yang tinggi yaitu 421,03 mg/L dengan pH sebesar 7,3. Advanced Oxidation Process (AOPs) telah banyak terbukti dapat menurunkan kadar COD limbah industri maupun domestik. Pada penelitian ini, AOPs yang dipilih adalah Elektro – Fenton. Penelitian ini bertujuan untuk memperoleh kondisi operasi yang maksimum pada metode Elektro - Fenton dan mengetahui pengaruh dari parameter yang digunakan untuk menurunkan kadar Chemical Oxygen Demand (COD). Penanganan uji COD dilakukan untuk mengetahui pengurangan kadar oksigen pada air limbah agar sesuai dengan standar baku mutu air limbah Rumah Sakit yang dapat dibuang ke lingkungan yaitu sebesar 80 ppm. Proses Elektro – Fenton dilakukan secara batch, dengan variasi rasio H2O2/COD yang digunakan terdiri dari 2,125; 10; dan 19, 16 (g/g). Sedangkan variasi tegangan sebesar 3 volt, 4 volt, dan 5 volt. Kondisi maksimum diperoleh pada rasio H2O2/COD 10 (g/g) dan tegangan 4 volt dengan waktu kontak 60 menit. Kata Kunci : air limbah rumah sakit, elektro – fenton, proses oksidasi lanjutan, kebutuhan oksigen kimiawi, hidrogen peroksida


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221
Author(s):  
Fatima Erraib ◽  
Khalid El Ass

Box–Behnken response surface design was successfully employed to optimize and study the olive mill wastewater (OMW) treatment by electrocoagulation (EC) process. The influence of four decisive factors were modelled and optimized to increase the removal of chemical oxygen demand (COD). The Box–Behnken design (BBD) results were analyzed and the second-order polynomial model was developed using multiple regression analysis. The model developed from the experimental design was predictive and a good fit with the experimental data with a high coefficient of determination (R2 ) value (more than 0.98). The optimal operating conditions based on Derringer’s desired function methodology are found to be; initial pH of 4.4, a current density of 27.6 mA/cm2 , electrolysis time of 14.1 min, and chloride concentration of 3.2 g/L. Under these conditions, the predicted COD removal efficiency was found to be 67.14% with a desirability value of 0.94. These experimental results were confirmed by validation experiments and proved that Box–Behnken design and response surface methodology could efficiently be applied for modelling of COD removal from OMW.


2019 ◽  
Vol 6 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Manjari Srivastav ◽  
Meenal Gupta ◽  
Sushil K. Agrahari ◽  
Pawan Detwal

Per capita average annual freshwater availability is gradually reduced due to increasing population, urbanization and affluent lifestyles. Hence, management of wastewater is of great concern. The wastewater from different industries can be treated by various conventional treatment methods but these conventional treatment technologies seem to be ineffective for the complete removal of pollutants especially refractory organic compounds that are not readily biodegradable in nature. Detergents, detergent additives, sequestering agents like EDTA, Pesticides, Polycyclic aromatic hydrocarbons, etc. are some of the recalcitrant organic compounds found in the wastewater. One of the treatment technologies for the removal of recalcitrant organic compounds is Advanced Oxidation Process (AOP). The production of hydroxyl free radical is the main mechanism for the AOP. AOP is a promising technology for the treatment of refractory organic compounds due to its low oxidation selectivity and high reactivity of the radical. Hydrogen peroxide (H2O2), Ozonation, Ultra-violet (UV) radiation, H2O2/UV process and Fenton’s reaction are extensively used for the removal of refractory organic compounds thus reducing Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), phenolic compounds, dyes etc. to great extent. From the studies, we found that Fenton’s reagents appear to be most economically practical AOP systems for almost all industries with respect to high pollutant removal efficiency and it is also economical. From the energy point of view, the ozone based process proves to be more efficient but it is costlier than the Fenton’s process.


2020 ◽  
Vol 82 (11) ◽  
pp. 2259-2270
Author(s):  
Shaik Nazia ◽  
Sugali Chandra Sekhar ◽  
Veeriah Jegatheesan ◽  
Suresh K. Bhargava ◽  
Sundergopal Sridhar

Abstract The goal of the present study is to treat industrial wastewater containing sodium aluminate using a chemically inert polyurea (PU) based thin film composite (TFC) reverse osmosis (RO) membrane to promote water reclamation and zero liquid discharge (ZLD). Pretreatment was carried out to reduce the pH of the effluent from 12.5 to 7.1. The TFC RO membrane was fabricated by coating PU on Polyethersulfone (PES) substrate by interfacial polymerization (IP). The surface and cross-sectional morphologies of the membrane were characterized using scanning electron microscopy (SEM). The indigenously synthesized membrane was effective in the removal of total dissolved solids (TDS), chemical oxygen demand (COD), colour and electrical conductivity. The experiments were conducted by varying the feed composition of the wastewater. The maximum water recovery and flux were found to be 74% and 73.9 L/m2·h. RO process using PU membrane exhibited significant potential for cost effective, safe and pollution-free treatment of sodium aluminate industrial effluent.


Sign in / Sign up

Export Citation Format

Share Document